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Preface

The term graph becomes the common word of Modern Mathematics and
Theoretical Computer Science. Recall, that the abstract model of a com-
puter, if we ignore the memory, is a finite automaton, roughly a directed
graph with colours on arrows taken from some finite alphabet. To make a
graph theoretical model of a computer with memory working with poten-
tially infinite data, one can use alternatively a concept of Turing Machine or
definition of an infinite family of directed graphs of increasing order. Studies
of families of graphs ( not an individual graph) satisfying a special require-
ments are highly motivated by applications in Economics, Natural Sciences,
Computer Science, Networking and in Mathematics itself. For instance, the
problem of constructing infinite families of small world graphs has many
remarkable applications in all above mentioned areas and in sociology. For
instance, the ”small world graph” of binary relation ”two persons shake
hands” on the set of people in the world has small diameter.
Other impotant direction in studies of infinite families of simple graphs

is Extremal Graph Theory. The girth of the graph is minimal length of
its size. Some impotant results in this direction had been obtained in 50th
by Paul Erdös’ via studies of families of graphs of large girth i.e. infinite
families of simple regular graphs of fixed degree and increasing order such
that the girth of the member is growing logarithmically with the growth of
the order. the existence such a family with arbitrary large degree had been
proven by Erdös’ famous probabilistic method.
Basically, just 3 explicit constructions of families of graphs of large girth

with unbounded girth and arbitrarily large degree are known: the family of
Cayley graphs had been constructed by Field’s award holder G. Margulis
approximately 40 years after appearance of Erdös’ probabilistic construc-
tion, the family of algebraic graphs D(n, q) defined over the arbitrary finite
field Fq and regular polarity graphs for D(n, q). Families of graphs of large
girth are traditionally used in Networking.
The above two families of simple graphs of large girth can be easily

converted in special finite automata and used for cryptographical purposes.
Theoretical studies and software implementations of related numerical and
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symbolic algorithm were condacted during last 10 years. Depending on time
dynamical system defined on the vector space Fq

n in terms of finite automa-
ton related to mentioned above polarity graphs turns appropriate tool for
the construction of stream ciphers and polynomial public key algorithms.
By definition finite automata are directed graphs (or digraphs), for which

the concepts of families of small world graphs and graphs of large girth
can be easily reformulated. The first results on Extremal Digraph Theory
were obtained very recently. Instead of prohibition of cycles of small length
there used requirements of absence of commutative diagrams. The analog
of Erdös’ upper bound for the graphs on v vertices of girth > 2n and some
other bounds had been obtained. New theory is principally different from
the case of simple graph: the Erdös’ bound is known to be sharp only in
exaptional case of n = 2, 3 and 5 but its analog for the digraphs is always
sharp.
The framework of Extremal Digraph Theory allows construction an in-

finite family of algebraic directed graphs of large girth for each finite com-
mutative ring with more than 3 regular elements and define depending on
time dynamical systems over free modulae. Change of finite fields on arith-
metical rings Z28 , Z216 and Z232 usually used in computers for arithmetical
computations allow to speed up the computations in encryption algorithms.
Infinite families of graphs are are traditionally used in classical Coding

Theory. Foundations of this theory are based on the concept of finite dis-
tance -transitive or distance-regular metrics (distance regular and distance
transitive graphs in other terminology). Recall that according to famous
Hilbert’s approach to Mathematical Concept of Geometry it is a special
incidence system (or multipartite graph) Great deal of known families of
distance transitive graphs are constructed in terms of the incidence geome-
try of group of Lie type or geometry of its Weyl group. Known construction
of families of distance - regular but not distance transitive graphs are also
based on the properties of such geometries. Many important classification
results of the Theory of Finite Geometries were obtained quite recently. The
leading researcher in that area J. Tits was awarded by prestigious Abel Prize
in 2008. In fact, some new nonclassical areas of Coding Theory like LDPC
codes and turbocodes use objects constructed via finite geometries: for the
first constructions of LDPC codes Tanner used finite geometries of rank 2,
the infinite algebraic family of graphs of large girth is related to infinite
rank 2 geometry over finite field have been applied to constructions of new
families of LDPC codes. Quite recent development gives an application of
linear codes (elements of finite projective geometry) and their lattices to
cryptography. Incidence geometries becoming tools for the development of
cryptographical algorithms.
The course is devoted to applications of families of graphs and digraphs
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of large girth, small world graphs and finite geometries to Information Se-
curity Theory. The main direction here is Cryptography, we only give ref-
erences on some applications of graphs of large girth to Coding Theory.
The material of the course were used for Monographical and Special

courses for seniour and graduate UMCS students majoring in Informat-
ics and Applied Mathematics. Formally prerequisites of the course in full
amount have to be Finite Fields Theory (some chapters of ”Galois Theory”
by E. Artin), Introduction to Combinatorial Group Theory (some chapters
from ”Combinatorial Group Theory” by Magnus, Karas and Soliter), ”In-
troduction to Simple Groups of Lie type” (for instance, the famous paper
by C. Shevalley), some elements of Ring Theory can be useful for sections
on dynamical systems and directed graphs. Anyway there is an option to
make a natural shortcut. For the simplicity we can assume that

(1) the finite field Fp always contains prime number p of its elements and
we do modp computations.

(2) consider only description of Weyl groups of type An (symmetric group
of order n!) and Bn (hyperoctahedrial group of order n!2

n) as groups
given by Coxeter generators.

(3) finite simple group is always a group PSLn(p), which is a factor group
of commutant for GLn(p) by center, where the group GLn(p) is a group
of n× n matrices A = (ai,j), ai,j ∈ Fp satisfying det(A) 6= 0.

(4) commutative ring is always Zn and we deal with calculus mod p.

After such assumptions the reader can understand the content of most
sections of the manuscrypt.
There is an option to add some information on the ”Galois” package

for Java and generate some examples of finite fields of order ps, s ≥ 2
(additionally to very basic class given in (1)).
If the teacher has some knowledge on world famous ”GAP” package

some additional examples of groups given by generators and relations can
be introduced (see item (2)).
Additionally to information on PSLn(p) and related projective geometry

of (3)we can introduce symplectic, orthogonal or hermitian classical groups
and corresponding geometries over finite fields.
Then the teacher can recall the structure of some commutative rings

studied within the standard UMCS course on Modern Algebra.
As we all know that a real life course and the supporting hanbook on

the course are always slightly different, so I hope, that this handbook will
be helpfull for students during their work on Bachelor Papers, Masters’ and
Doctoral Thesis.
Let us give the short overview of chapters content.
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The first Chapter is a very short introduction to Cryptography and Mul-
tivariable Polynomials Theory. It starts with elements of Classical Cryptog-
raphy. We introduce the language of symmetric cryptography, properties
of one time pad private key, linear and affine encryption together with its
cryptanalysis, encryption based on Little Fermat Theorem. Other part
of this chapter is an Introduction of main ideas of Complexity theory and
Modern Cryptography. We define one way functions, present the idea of the
public key algorithm, trapdoors, digital signatures. This section contains
description of famous RSA algorithm based on Euler Theorem and Diffie
- Hellman protocol for the key exchange. We give also Imai Matsumota
algorithm for digital signatures based on quadratic multivariable invertible
map on the vector space over Galois field. This is a very natural bridge
to the last section devoted to special nonlinear polynomials over fields and
rings. Readers can implement Imai-Matsumoto encryption with usage of
Galois package for Java language. They can study effective cryptanalysis
for Imai Matsumoto given by J. Patarin (Paris). The description of Patarins
method the reader can find in well known book Algebraic Cryptography by
Neal Koblitz. The last part of first chapter contains the following interest-
ing facts on polynomials. Each permutation on finite vector space can be
written in the form of polynomial map, there is a formulae of prime number
written in the form of multivariable polynomial with integer coefficients
(Matijasevich statement), there exist depending on time dynamical system
for the finite dimensional vector space.
The second chapter devoted to algebraic aspects of Extremal Graph

Theory. We present well known upper bounds for the size of graphs with-
out prescribed cycles. Even Circuit Theorem by P. Erdös’ and some of its
modifications are presented. The concepts of a family of small world graphs
and family of graphs of large girth are introduced. The explicit algebraic
constructions of such graphs are given in this Chapter. They could be used
in Coding Theory (references are given) and in Cryptography (algorithms
are introduced). Readers can implement various modifications of such algo-
rithms.
Third chapter contains other examples of applied algebraic graphs. The

constructions of graphs are given in the language of Group Theory and
Finite Geometries Theory. New cryptographical algorithms corresponding
to infinite families of graphs are given. For instance, author introduces key
exchange protocol given in terms of Tits and Schubert automata. J. Tits
is one of the founders of Finite Geometries Theory. This part of the book
requires serious prerequisites on Combinatorial Group Theory. The last
chapter is devoted to directed graphs (shortly digraphs) and their applica-
tions to Information security. It is important because of finite automaton is
a directed graph with special coloring. The chapter contains the overview
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of Extremal Digraph Theory and various digraph based cryptographical
algorithms. Some of such algorithms use arithmetical rings instead of one
fiels.
Finally, I would like to say how it all at started.
My teacher of Mathematics, Lev Kaluznin, was a sun of Russian em-

igrants of October Revolution 1917. He got higher education at the best
French and German Universities. He became a prominent mathematician.
After Stalin’s death he and his mother got a permission to return to the
USSR. During his life he kept continious mail correspondence with his close
friends A. Weil, M. Lazar, C. Shevalley, M. Krasner, H. Cassenhouse, with
J. Tits who was his youngest classmate in the classes of E. Artin, as well as
with A. Kerber and many of his former students at Berlin University (see
[92]). As a Professor of Kiev State University he became one of the founders
of Computer Science in the USSR ( particularly, he provided theoretical
support for the Lebedev’s team during their work on the construction of
the first
Soviet supercomputer, see [55]) and some interdisciplinary theoretical

areas (Mathematical linguistics, Mathematical chemistry and some other
areas).
Two sections of my PhD Thesis were devoted to studies of special max-

imal subgroups of symmetrical groups started by L. Kaluznin and M. Klin.
Topic of the third section was proposed by J. Tits in his private letter to
my supervisor. It was the problem of studies the overgroups of PSLn(q),
acting on the totality of m-dimensional subspaces of finite projective geom-
etry. All problems were formally from Permutation Group Theory, but they
were connected with studies of Hamming, Johnson and Grassman graphs of
Coding Theory their symmetries and new distance regular metrics.
For the postdoctoral research J.Tits proposed studies of overgroups of

Finite Simple Groups of Lie type acting on the elements of their geometries
of prescribed type. I started to work on that asighnment together with my
first graduate students V, Zhdan-Poushkin and M. Muzychuk (currently
Professor of Bar Ilan University (Israel)). One of the applied byproducts
of my research in this direction was a discovery of distance regular but not
distance transitive metric of Algebraic Coding Theory (”Ustimenko graphs”
from subject index of ”Distance regular graphs” by A. Brower, A. Cohen
and A. Niemaer, Springer, 1989). The other technical result was the in-
terpretation of geometries of simple group of Lie type and geometries of
Kac-Moody group in terms of linear algebra. In case of Kac-Moody group
over Fq over diagram Ã1 the analitical descriptions of q + 1 - regular and
q-regular forests via infinite system of quadratic equations were obtained. It
gave an option to present a q-regular forest as a projective limit of algebraic
q-regular graphs.
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In 1988 J. Hemmeter (USA) used my construction of distance regular
graphs for creation ”Hemmeter graphs”. Naturally we started joint re-
search. From the beginning F. Lazebnik (USA) and A. Woldar (USA) were
participants of our project. In 1990 the National Science Foundation for
the first time in its history organized an International Competition for the
best USA-Soviet joint research project funded by NSF and Soviet Academy
of Sciences. The document had been sighned by Presidents J.Bush and
M.Gorbachev. We presented our project for the NSF competition. In 1991
the Soviet Union collapsed and NSF announced our project as the only
winner (funding to University of Delaware came from the USA side only).
At the beginning J. Hemmeter and I were Principal Investigators (PI). The
project was prolongated several times (1991-1997) as standard NSF project
(J. Hemmeter and A. Woldar moved from Delaware to other Institutions and
F. Lazebnik became a PI. We used one of the deformations of Kac-Moody
geometry for the definition of q-regular graphs D(n, q), their projective limit
was a q-regular forest D(q).
Andrew Woldar was a very important contributor for the success of the

project, for instance he formulated the conjecture on the descryption of
trees of q-regular forest D(q) during his General Membership at the Insti-
tute of Advanced Studies (Prinston)). We used one of the deformations
of Kac-Moody geometry for the definition of q-regular graphs D(n, q), their
projective limit was a q-regular forest D(q). We (F. Lazebnik, V. Ustimenko
and A. Woldar) applied this family of graphs for the analitical descryption
of q-regular tree CD(q) and got several constructive results in Extremal
Graph Theory based on properties of this family.
In 1997 the Guinnand and Lodge from Ottawa Communication Cen-

ter found an interesting applications of D(n, q). The adjacency matrix for
D(n, q) can be used succesfully as a Tanner graphs for the constructions of
LDPC codes and turbocodes of Coding Theory for the protection of channels
from noise. This idea were practically used by NASA and other companies
in satelite communications. Studies of theoretical properties of related to
D(n, q) codes became a popular topic.
In 1996 the important for me event did happened. My teacher Lev

Kaluznin told us, the participants of his seminar, that it would be the
time when we could talk in person with European and American colleagues,
whose results we were discussing at his seminars. At that time , we did not
belive him. In 1996 I got an invitation from Professor Peter Slodowy to
take part in the mini workshop on Buildings at the Oberwolvach Institute.
It was an opportunity to meet J. Tits and F. Buekenhout in person. So
my teacher was right. To my surprise J. Tits turns out to be a person
very interested in real life applications and the reader of IEEE publications
(software and hardware engeneering). His generalised polygons were used by
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Tanner for the first constructions of LDPC codes. So J.Tits kept an eye on
the development of expanding graphs and graphs of large girth applications.
Our NSF project was a success as a pure mathematical project, but

J.Hemmeter (the key writer of the first proposal) and myself were planning
applications to Computer Science. So I felt that the circle of the started
research was not completed yet. In 1997 I got a General Membership at
Mathematical Research Science Institute (Berkeley, USA) and used this
opportunity to participate at H. Lenstra seminar on Cryptography and
discussed the idea of usage families of graphs of large girth in Cryptog-
raphy with E. Berlekamp. Next year I presented some encryption algo-
rithms at AMS Meeting (Loisville, USA(March 1998)), Gary Ebert’s Sem-
inar at Delaware University(USA), International Memorial Voronoi Con-
ference (Kiev,Ukraine), and seminars of University of Manchester, London
University (joint seminar of Imperial College, Kings and Queen Mary col-
lege,UK) during my visit to the UK under the invitation of Royal Society.
During my stay in Britain I got an offer from the University of the South
Pacific where I could participate at the first implementations of graph based
encryption algorithms (University intranet, Oracle based University banner
system, GIS). I still work on these problems.
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1.1. Basics of Symmetric Cryptography

1.1.1. Introduction

Cryptography has a tremendous potential to enrich math education. In
the first place, it puts mathematics in a dramatic setting. students are
fascinated by intrigue and adventure. More is at stake than a grade on a
test: if you make a mistake, your agent will be betrayed.
In the second place, cryptography provides a natural way to get students

to discover certain key mathematical concepts and techniques on their own.
Too often math teachers present everything on a silver platter, thereby
depriving the students of the joy of discovery. In contrast, if after many
hours the youngsters finally develop a method to break a cryptosystem,
then they will be more likely to appreciate the power and beauty of the
mathematics that they have uncovered.
In the third place, a central theme in cryptography is what we do not

know or cannot do. The security of a cryptosystem often rests on our inabil-
ity to efficiently solve a problem in algebra, number theory, or combinatorics.
Thus, cryptography provides a way to counterbalance the impression that
students often have that with the right formula and a good computer any
math problem can be quickly solved.
Finally, cryptography provides an excellent opportunity for interdisci-

plinary projects completed by team of students.

1.1.2. On terminology of classical cryptography, linear algebra
methods

Assume that an unencrypted message, plaintext , which can be image
data, is a string of bytes. It is to be transformed into an encrypted string
or ciphertext , by means of a cryptographic algorithm and a key : so that the
recipient can read the message, encryption must be invertible.
An assumption first codified by Kerckhoffs in the nineteen century is

that the algorithm is known and the security of algorithm rests entirely on
the security of the key.
Conventional wisdom holds that in order to defy easy decryption, a

cryptographic algorithm should produce seeming chaos: that is, ciphertext
should look and test random. In theory an eavesdropper should not be
able to determine any significant information from an intercepted cipher-
text. Broadly speaking, attacks to a cryptosystem fall into 2 categories:
passive attacks, in which adversary monitors the communication channel
and active attacks, in which the adversary may transmit messages to obtain
information (e.g. ciphertext of chosen plaintext).
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Attackers hope to determine the plaintext from the ciphertext they cap-
ture; even more successful attacks will determine the key and thus comprise
the whole set of messages.
Passive attacks are subdivided into two following major types:

(i) ciphertext only-the adversary has access to the encrypted communica-
tions.

(ii) known plaintext – the adversary has some plaintextx and corresponding
ciphertexts.

In case of attacks of type (i) the adversary hopes to determine the plain-
text from the captured ciphertext. The goal of attacks of type (ii) is getting
the key.
The revolutionary classical result on private key algorithm was obtained

by C. Shannon at the end of 40th (see [52], [53] and further references).
He constructed so called absolutely secure algorithms, for which keys are
rings of random bits at least as long as a message itself. They achieve
the seeming impossibility: an eavesdropper is not able to determine any
significant information from obtained ciphertext. So his or her only option
is a brut force serch via entire keyspace. The simplest classical example is
the following one-time pad : if pi is the i-th bit of the plaintext, ki is the
i-th bit of the key, and ci is the first bit of the ciphertext, then ci = pi + ki,
where + is exclusive or, often written XOR, and is simply addition modulo
2. One time pads must be used exactly once: if a key is ever reused, the
system becomes highly vulnerable.
It is clear that the encryption scheme as above is irresistible to attacks

of type (ii) - you need just subtract pi from ci and get the key.
Let us consider more general case of affine transformation x → Ax+ b of

the vector space Fq
n, where q is a prime power and Fq is a finite field of order

q. We assume here that each element of the Fq is a column vector and write
the encryption transformation as x → Ax + b, where x is the plaintext,
the nonsingular matrix A and b ∈ Fq form the key. Let the plaintexts
p1, . . . , pn+1 are in ”general position” i.e. p2 − p1, p3 − p1, . . . , pn+1 − p1
are linearly independent vectors and the adversary (or cryptanalyst) get
related to each pi ciphertext ci, then this information is sufficient for the
computation of the key (A, b) by methods of elementary linear algebra.
Nowadays the security of the encryption private key algorithms rests on

the chosen password (key), it has to be resistant to attacks of type (i) and
(ii). So in case of the plainspace Fq

n we need polynomial bijections of degree
≥ 2 as encryption maps.
We assume conventional definition of algorithm define via exexution of

Turing machine working with ”potentially infinite text”. It means that
encryption algorithm working with ”potentially infinite” plainspace.
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All algorithms for the symmetric encryption are divided on block ciphers
and stream ciphers. In case of block ciphers the plainspace P is partited
onto blocks Bi, i = 1, 2, . . . , n of equal size equal to some constant b The
encryption map corresponding to chosen key maps each set Bi onto itself.
Stream cipher is the fast encryption algorithm which is not a block ci-

pher. It means that the partition onto invariant blocks does not exist. Let
us use the language of permutation group theory for studies of principle
difference between block ciphers and stream ciphers. The encryption map
is a bijection (permutation) on plainspace. We may consider the permuta-
tion group GA generated by encryption maps for chosen algorithm A. For
the construction of GA we may use various combinations of keys from the
keyspace. Two points p and p′ belongs to the same orbit if there is a permu-
tation π ∈ GA such that π(p) = p′. In case of block cipher each block is a
union of some orbits. So the size of orbit does not grow with the growth of
size of the plainspace, it is bounded by b. In case of reasonable stream cipher
size of each orbit is growing. By definition a transitive permutation group
is a subgroup of corresponding symmetric group with exactly one orbit.
The algorithm A with transitive group GA has the following property: for
arbitrary pair p and p′ there is π in GA corresponding to some combination
of keys such that π(p) = p′.

1.1.3. Little Fermat Theorem and discrete logarithm

Let us consider example of algorithm with good resistence to attacks of
type (ii).
Acording to famous Little Fermat’s Theorem for each prime number p

and integer x 6= 0 mod p the equality xp−1 = 1 mod p holds. The proof is
very easy: Let 1, 2, . . . , p− 1 be the list of elements of multiplicative group
Fp

∗ for Fp. We may choose x ∈ Fp
∗ and form the new list 1x, 2x, . . . , x(p−1).

Element x is invertible so both lists containe same elements just written
in different order. So the computation of the products 1×2, . . . ,×p−1 and
1x×2x, . . . ,×x(p−1) gives us same number modulo p. We get the equality

(p− 1)! = (p− 1)!xp−1 mod p.

We can multiply lefthandside and righthanside by the inverse for (p − 1)!
and get the equality written in Little Fermat Theorem
This statement implies xp = x and xα = x for α = 1 mod p− 1.
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The algorithms based on the Little Fermat Theorem

We assume that totality of residues {x|x 6= 0, x 6= 1 mod p, is our
plainspace. Integers α such that α is mutually prime with p − 1 form the
key-space. So the map

fα : x → y = xα

is encryption map.
Little Fermats Theorem allows to decrypt with the map

gβ : y → z = yβ,

where αβ = 1 mod p− 1.
Alice and Bob can easily compute β via expanded Euclead’s algorithm

checking that the graatest common divisor for (α and p − 1 is 1 and pre-
senting 1 in the form αM + (p− 1)N . It is clear that M(modp− 1) = β
Let adversary get a pair d (plaintext) and c (ciphertext). For the com-

putation of the key he (or she) has to solve the equation dα = c mod p− 1
for variable α.
Finding α is famous difficult discrete logarithm problem. If p is ”suffi-

ciently large” ( for instance p contains 200 digital numbers nobody knows
how to solve it. The equation is on the list of known NP -hard problem (see
[42]). Conjecture that there is no polynomial in time algorithm for solving
problems from the list is still open, but nobody knows how to create such
algorithm. It means that the encryption method based on Little Fermat’s
Theorem has good resistence to attacks of type (ii).

1.2. On the concepts of Modern Cryptography

1.2.1. Ideas of assymetry

The paper [25] by Diffie and Hellman was published in 1976. This event
change the shape of Cryptography, some new directions were developed.
The basic definitions of Modern Cryptography are below.
One way function is the one to one correspondence satisfying following

requirements

(i) there exists a polynomial algorithm for the computation of the value
F (x).

(ii) the polynomial algorithm of finding inverse map F−1 does not exist.

The conjecture on existence of one way function is open. For practical
use one may substitute requirement (ii) on weakercondition:
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(ii)′ the complexity of polynomial algorithm of finding inverse map F−1 is
equivalent to solving of one NP -hard problem from the list [42].

Trapdoor function with a secret parameter K is a one to one correspon-
dence FK : X → Y satisfying following 3 requirements
(i) there exists a polynomial algorithm for the computation of the value

FK(x) for each K and x.
(ii) the polynomial algorithm of finding inverse map F−1

K for unknown K
does not exist.

(iii) there exists a polynomial algorithm for the computation of the inverse
for FK(x) with known parameter K.
Again the statement on the existence of trapdoor function is not proven

yet.
There are examples of functions satisfying (i) and (iii) and requirement

(ii)’. The most famous is the encryption function for RSA cipher.
The definitions above are motivated by idea of public key or assymetryc

cryptographical algorithm. Let us consider the way to use trap-door func-
tions for solution of new cryptographical assighnments.
Alice (the holder of secret papameter K) wants safe delivery of secret

messages via open communication channel. Bob (public user) does not have
a parameterK. He get an encryption function FK(x) via open channel with-
out option to compute K. If Alice (or somebody else) sends him encrypted
plaintext FK(p) he can not decrypt and get p. Of course the holder of K
may enjoy the property (iii) and decrypt Bob’s messages within polynomial
time. The adversary is in the same shoes with Bob, so he has no option can
not decrypt Bob’s messages.
Notice, that the adversary can make attacks of type (iii) because he can

compute the corresponding ciphertext for any chosen plaintext. Encryption
based on the trap-door function (of course, in the case of its existence) has
a wounderfull resistence to attacks of type (iii).
The term public key is used, because Alice presents encryption function

to public (printing in telephone book, sending by internet, etc)
In the same paper Diffie and Hellman proposed the key exchange algo-

rithm. They used the encryption function based on Little Fermat’s Theo-
rem introduced in previous unit. Correspondents Alice and Bob establish
a primitive element b of multiplicative group of prime finite field Fp via
open communication channel. They choose positive integers nA and nB ,
respectively.
They exchange elements hA = bnA and hB = bnB via open channel.

Finally, Alice and Bob compute common vector c as hB
nA and hA

nB , re-
spectively. So they can use c as a key in some symmetric encryption method



1.2. On the concepts of Modern Cryptography 7

The security of ”symbolic Diffie-Hellman algorithm” is based on the
discrete log problem for the cyclic multiplicative group for Fp:
Really, the adversary (Catherina) has field elements b, c1 = bnA , and

c2 = bnB .
She have to solve one of the equations bx = ci, i = 1, 2. Let the adversary

gets nA as a solution of first equation. Then she computes c as c2
n
A.

The dicrete logarithm problem is on the list of NP -hard problems. So
if p is ”sufficiently large” then the protocol for key exchange is secure.

1.2.2. Euler Theorem and RSA

Let us consider the commutative ring Zn = {0, 1, 2, . . . , p− 1}. Element
i of Zn is regular if the greatest common divisor of i and n is 1. Leonard
Euler generalised Little Fermat’s Theorem via studies of the multiplicative
group of all regular (invertible) elements of the ring Zn. Recall that classes
of Zn are 0, 1, . . . , n − 1. If the greatest common divisor of i and n is 1.
Then extended Eucleads algorithm allows to write presentation of 1 in the
form of linear combination of i and n:

1 = Mn+Ni

If we consider the lefthandside and righthandside of the above equality
modulo n we obtaine 1 = Ni mod n.
Thus N mod n is the multiplicative inverse for i.
If the greatest common divisor of i and n is d > 1 then i×n/d equals 0.

So i as a zero divisor does not have an inverse element.
So the multiplicative group Zn

∗ of Zn is {i|(i, n) = 1}. The order of this
group is known as Euler function φ(n) = |{i|(i, n) = 1}|. Euler proved that
remarkable multiplicative property of φ : for each pair m,n function φ(mn)
coinsides with φ(n)× φ(m).
From the Little Fermats Theorem we get φ(p) = p − 1 for the prime p.

It is clear that φ(2m) = 2m−1 , m ≥ 1 because the totality of mutual primes
with 2m on the interval (0, 2m) is exactly the collection of odd numbers from
the interval. We can combine this two observations and get

φ(pm) = pm − pm−1

for prime p and integer m ≥ 1.
Finally, the Main Theorem of Arithmetics allow us to present each pos-

itive integer n as a product of its divisors

n = p1
α1 × p2

α2 . . . ps
αs

where p1, p2, . . . ps is a list of all prime divisors of n.
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The above decomposition allows to write Euler function in the form

φ(n) = (p1
α1)− p1

α1−1)× (p2
α2 − p2

α2−1)× · · · × (ps
αs − ps

αs−1).

Anyway the computation of the Euler function can be a very hard task
if the decomposition of n into primes is unknown.
The Euler Theorem can be obtained as a corollary of the well known

statement of Finite Group Theory: The order of group element is a divisor
of the group order. So in case of group Zn

∗ we have

gφ(n) = 1 mod n for g ∈ Zn
∗.

In case n = p, where p is prime we are getting Little Fermat Theorem.
We can write Euler Theorem in the form

gα = g mod n for α = 1 mod φ(n).

Let us consider the posibility of symmetric encryption based on Euler
Theorem.
We assume that totality of residues {x|(x, n) = 1} is our plainspace.

Integers α such that α is mutually prime with φ(n) form the key-space. So
the map

fα : x → y = xα

is the encryption map.
Euler Theorem allows to decrypt with the map

gβ : y → z = yβ,

where αβ = 1 mod φ(n).
Alice and Bob share α, they can easily compute β via expanded Euclead’s

algorithm checking that the graates common divisor for (α and φ(n) is 1
and presenting 1 in the form αM+φ(n)N . It is clear thatM(modφ(n)) = β
Let adversary get a pair d (plaintext) and c (ciphertext). For the com-

putation of the key he (or she) has to solve the equation dα = c mod φ(n)
for variable α.
Finding α is famous difficult discrete logarithm problem. The complexity

depends heavily from parameter n. If n is the products of big primes nobody
knows how to solve this problem. So we are getting a symmetric algorithm
with the good resistence to attacks of type (ii).
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Assymetric algorithm RSA based on Euler Theorem.

The main idea of RSA based on the following facts

(a) the computation of the products of two numbers can be completed fast
by modern computer

(b) nobody knows fast algorithm forthe prime factorization of big integer
m.

Of course, one can list all primes ≤
√

(m) and divide m on each of them.
It allows us to factorize m. The problem is that assimptotically the number
of primes from such a list is 2

√

(m)ln(m)−1 (see [81]). If m consist on 100
decimal digits, then there are at least 4×1042 primes within the interval. It
means that for the computer making million of operations per second prime
decomposition will take at least 1035 years.
Nowadeys are known more efficient algorithms, but all of them are also

rather slow.
Authors of RSA proposed to chose number n in the form of product

of two distinct primes p and q of approximately same order. So φ(n) =
(p − 1)(q − 1). The unique condition for the choice of α in the above
algorithm is (α, p − 1) = (α, q − 1) = 1.
So Alicia (the holder of the key) choses p and q. She computes n = pq

and chooses α. She knows φ(n) = (p−1)(q−1) and computes β via extended
Eucleads algorithm. So she can encrypt with the function

fα : x → y = xα

and decrypt with

gβ : y → z = yβ,

where αβ = 1 mod φ(n).
So Alice can print the pair (n, α) in the telephone book. So any public

user (Bob) can use encryption function fα. Of course Alice keeps primes p
an q, secretely. If primes are ”sufficiently large” Bob is able to encrypt but
not able to decrypt.
For the illustration of their method Rivest, Samir and Adlemann en-

crypted some frase in English. During the first step they used standard
method of converting the text to number a = 01, b = 02, . . . , z = 26,
emptyspace = 00, on the second step they used encryption map fα for n =
11438116257578888 676693257799761462010218296721242362562561842935
706935245733897830 597123563958705058989075147599290026879543541
and α = 9007. Numbers n, α had been published. The information that
m = pq where p and q are primes written with 63 and 64 decimal digits.
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The authors promised the 100 dollars as award for solution. This story
comes to an end 17 years later, when D. Atkins, M. Graff, A. K. Lenstra
and P.C. Layland announced on decryption of the frase (see [2]). The re-
sult was achieved due to application of new quadratic sieve method for the
prime decomposition and usage of enourmous computational power of 1600
computers, the work of approximately 600 volonteers during 220 days. The
100 dollars aword had been sent to Free Software foundation.

1.2.3. Cryptoanalitical example, Imai - Matsumoto encryption

Let K be an extension of degree n of the finite field Fq, where q is a
power of 2, and let β1, β2, . . . , βn be a basis of K as an Fq-vector space.
Alice will be using the Imai- Matsymoto system in K. She regards each

element of K as an n-tuple over q.
Alice may choose to keep her basis secret in which case we can not assume

that a cryptoanalyst (whom we shall name ”Catherine”) knows what basis
she is using.
Both plaintext message units and ciphertext message units will be n-tples

over Fq. We will use the vector notation

x = (x1, x2, . . . , xn) ∈ Fq
n

for plaintext and

y = (y1, y2, . . . , yn) ∈ Fq
n

for ciphertext. When working with matrices, we shall consider vectors to
be column vectors (although in the text we shall continue writing them as
rows).
In transforming paintext into ciphertext, Alice will work two intermidi-

ate vectors, denoted u = (u1, . . . , un) ∈ Fq
n and v = (v1, . . . , vn) ∈ Fq

n.
Given a vector in Fq

n, we shall use boldface to denote the corresponding
element of K with respect to the basis βj .
Next, Alice chooses an exponent h, 0 < h < qn, that is of the form

h = qα + 1

and satisfies the condition g.c.d.(h, qn − 1) = 1. (Recall that q was choosen
to be a power of 2, if q were odd, then g.c.d.(h, qn − 1) is at least 2.)
The condition g.c.d.(h, qn − 1) = 1 is equivalent to requiring that the

map u → uh on K is one to one, its inverse is the map u → uh
′

, where h′ is
the multiplicative inverse of h modulo qn − 1.
Alice may choose o keep h secret. However, since there are relatively

few possible values for h, she must asume that Catherine will be prepared
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to run through all possibilities for h. That is, even if she keeps h secret, the
security of her system must be elsewhere.
In addition, Alice chooses two secret affine transformations, i. e., two

invertible n × n matrices A = (aij), 1 ≤ i, j ≤ n and B = (bij), 1 ≤
i, j ≤ n with entries in Fq, and two constant vectors c = (c1, . . . , cn) and
d = (d1, . . . , dn).
The purpose of the two transformations is to ”hide the monomial map”

u → uh - hence the name ”hidden monomial cryptosystem”.
We now describe how Alice gets her public rule for going from plaintext

x ∈ Fq
n to ciphertext y ∈ Fq

n.
First, she sets

u = Ax + c.

Next, she would like to have v ∈ K simply equal to the h-th power of
u ∈ K and then set

y = B−1(v − d)

that is v = By + d.
However, her public encryption rule will go right from x to y, and will

not directly involve exponentiation at all.
In order to get formulas going from x directly to y Alice notices that

since v = uh and h = qθ + 1, she has

v = uq
θ
u.

Recall that for any k = 1, 2, ..., n the operation of raising to the qk-th power
in K is an Fq-linear transformation. Using linear algebra, she can get
n-equations that express each y as a polynomial of total degree 2 in the
x1, . . . , xn.
Alice makes these n equations public. If Bob wants to send her a plain-

text message x, he substitutes the xi in these equations and finds yi. On
the other hand, Catherine, who knows only the ciphertext (and the public
key), must solve a nonlinear system for the unknowns xi.
When Alice receives the ciphertext y, she uses her knowledge of A, B,

c and d and h to recover x, without having to solve the publicly known
equations for the xi. Namely, let h

′ be the multiplicative inverse of hmodulo
qn − 1, so that the map u = vh

′

inverts the map v = uh on K. Alice first
computes v = By + d, then raises v=

∑

viβi ∈ K to the h′-th power (i.e.,
sets u = vh

′

, and finaly compute x = A−1(u− c).
The following summarises Alice’s decryption:

(y1, . . . , yn) → y = By + d → u = vh
′ → x = A−1(u− c)
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Remark. The cryptosystem described above is a simplified version of
the one proposed in the original paper of authors. For details about breaking
the original Imai-Matsumoto system see [59], [80] and further references.

1.3. Remarks on the power of bijective polynomial maps

1.3.1. On the group of bijective polynomials

Let (Fq)
n be a vector space over the finite field Fq, where q is the prime

power.
As it is usual in cryptography, we can apply a term plaintext to a string

of characters x = (x1, x2, . . . , xn) over the alphabet Fq. When working with
matrices, we shall consider vectors to be column vectors (although in the
text we shall continue use them as rows). We can consider x as a message
containing a certain information. If π is some bijective transformation of
(Fq)

n, then π(x) is an encrypted message or a ciphertext.
The natural choice for π is a combination of some affine transformations

ai = Aix+ bi, i = 1, . . . , k, where Ai is a square matrix and bi ∈ (Fq)
n, with

some nonlinear transformation T of the vector space (Fq)
n.

Let us consider the case of Fp, where p is a prime number. Affine trans-
formations x → Ax+ b, where A be an invertible matrix and b ∈ (Fq)

n form
an affine group AGLn(Fp) of order p

n(pn − 1)(pn − p) . . . (pn − pn−1). This
is a subgroup of the symmetric group Spn of order (p

n)!.
The following fact had been proven in [76].

Theorem 1. Let G a proper subgroup of Spn containing AGLn(Fp). Then
G coincides with AGLn(p) or Spn.

Let us choose the nonlinear transformation T . The following statement
follows directly from the theorem

Corollary 1. Let T be a chosen nonaffine transformation of the vector space
V = Fp

n. Then each bijective transformation T of the vector space V =
(Fp)

n can be presented as a product of ” basic ” transformations Q(α1, α2) =
α1Tα2 where α1 and α2 are appropriate affine transformations of V .

We recall the following well-known algebraic fact:

Theorem 2. Each transformation T of the vector space V = (Fp)
n can

be treated as a polynomial map P : x → y, where x = (x1, . . . , xn), y =
(y1, . . . , yn), yi = Pi(x1, . . . , xn), i = 1, . . . , n for some polynomial expres-
sions Pi in variables xi over the finite field Fp.
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It means that symmetric group Spn is the Cremona group for the vector
space Fp

n of all regular polynomial avtomorphisms. Notice that change
open variety Fn

2 onto F2
n − {0}.

The following ”public key” strategy can be derived naturally from the
statements above:

(A) Choose polynomial transformation P , which you can invert fast (for
polynomial number of steps f(n)), where degf(n) is ”small”)

(B) select the family Ω of affine transformations αi, i = 1, . . . ,m and quan-
tum maps Qj = βjPγj , j = 1, . . . , l, where βj , γj ∈ Ω

(C) compute the polynomial map Q = Q1Q2 . . . Ql (composition of Qi), i.e.
get the formula y = Q(x) = (P1(x1, . . . xn), . . . , Pn(x1, . . . , xn)), where
polynomials Pi written in canonical form.

(D) of Q into quantum mapsQi secret and give the list L of public equations
Pi to you correspondent B.

Now, you correspondent can encrypt his/her messages to you by applying
Q to the plaintext, but the problem of decryption , i.e. computation of
inverse map Q−1 can reach any level of complexity: you may obtain any
permutation from the symmetric group of Spn as your expression Q.
For you, the problem, of decryption can be feasible if length l is ”reason-

ably moderate”. You can invert each Qi and apply them to the ciphertext
in the reverse order with respect to the known decomposition of Q in Qi.
Of course, we have no illusion to solve mathematically the great problem

of cryptography on the existence of asymmetric function: corollary from
the theorem 1 does not contain any restrictions on the number l of basic
transformations.
But, it is reasonable to assume that even in case of polynomial length l

we are able to produce practically secure public keys. In fact, well known
Imai-Matsumoto encryption scheme, Small Dragon and its modifications
by J. Patarin are realisation of A-D in case l = 1. They are examples of
basic ”transformations”. The reader can find correspondent cryptanalysis
in [59]. Multiple rounds of these algoritms (the case of l ≥ 2) could be
secure. It could be that basic transformation is more sophisticated than the
composition of many basic transformations.

Remark 1. Substitution the field GF (q), where q = pj , p is a prime
number, instead of Fp in the scheme (A)-(D) does not led to more general
scheme, because of vector space (Fq)

d over the ground field Fq, is a vector
space of dimension jd over Fp, but such a substitution can be useful in prac-
tical applications. We can consider also a Kj , where K is a commutative
field, instead of vector space Fp

j .
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Remark 2.Size of the family Ω of step B can be bounded by polynomial
expression in variable n, we may think that Ω consist of some elementary
transvections ti,j(1), i 6= j and diagonal matrices for which exactly one entry
equals to fixed generator of of multiplicative group of Fp and other entries
equal 1, regular translations x → x+ei, where ei is addition of 1 to xi. One
can consider even smaller set of generators of Affine group.

1.3.2. Towards polynomial formulae for the prime number

In time of Leonard Euler, who noticed that x2 + x + 1 takes on prime
values for x = 0, 1, 2, . . . , 39, mathematicians were working on the search
for the plynomial formulae for the prime number p, i.e element q(x) ∈ Z[x]
such that for each natural number n the number q(n) is prime (positive or
negative) and for each prime number p there is natural x such that q(x) = n.
Nowadays we know that there is no a polynomial q(x) with this property.
Sadly, it is easy to show that a polynomial (P (z1, z2, . . . , zk) with complex
coefficients, which takes only prime values of nonnegative integers, must be
constant.
Anyway this directions was not useless. Modified approach might be to

ask if there is a non constant polynomial all of whose positive values (as the
variables range in the set of non-negative integers) are all primes.
Yuri Matijasevic got a proof that this was possible for polynomial with 32

variables as a byproduct of his 10-th Hilbert problem solutions a byproduct
of his 10-th Hilbert problem solution (see [72]).
Jones. Sato, Wada and Wiens [49] gave the following explicit example

of such a polynomial with 26 variables (and degree 25):

(k + 2){1 − [wz + h+ jq]2 − [(gk + 2g + k + 1)(h + j) + hz]2−
− [2n+ p+ q + ze]2 − [16(k + 1)3(k + 2)(n + 1)2 + 1− f2]2−
− [e3(e+ 2)(a + 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2−
− [16r2y4(a2 − 1) + 1− u2]2−
− [((a+ u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x+ cu)2]2

− [n+ l + v − y]2 − [(a2 − 1)l2 + 1−m2]2 − [ai+ k + 1− li]2−
− [p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2−
− [q + y(a− p− 1) + +s(2ap+ 2a− p2 − 2p− 2)− x]2−
− [z + pl(a− p) + t(2ap− p2 − 1)− pm]2}

Notice that this polynomial factors! Look at the special form of the
second part: it is one minus a sum of squares, so the only way for it to be
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positive is for each of the squared terms to be zero.

Challenge:
Can you find a values (a, b, c, d, . . . , z) (all non-negative) for which the

polynomial above is positive?

The record for the lowest degree of such a polynomial is 5 (with 42
variables), and the record for fewest variables is 10 (with degree about
1.6.1045 [73]).
From other side there is no problem to increase the number of variables:

we say that Q(x1, . . . , xn) is a prime generating polynomial PGP if the
range of Q for nonnegative values of variables is the totality of all primes. Of
course PGP’s exist for each n ≥ 10, they have an interesting cryptographical
properties, it is an interesting problem to study the complexity of their
computation.

1.4. Arithmetical dynamical systems on a free module and

hidden discrete logarithm

1.4.1. 0n the existence of arithmetical dynamical systems

It is well known that a continuous bijection of the interval [a, b] has
a fixed point. In case of open variety Kn, where K is commutative ring
situation is different. We can define various nonlinear polynomial bijections
on Kn which do not have a fixed point. Families of special nonlinear maps
of this kind with additional cryptographical properties can be defined via
arithmetical dynamical systems [118].
This section is devoted to the special key management block for the

polynomial stream ciphers defined in [40] via such system defined on the free
module Kn for each commutative ring. Security of the key based on the
complexity of the discrete logarithm problem. It has additional heuristic
security because of the ”hidden base” and ”hidden value” of the discrete
logarithm function. Implemented software package has been used for the
evaluation of mixing properties and speed of the private key encryption [46].
Let K be the commutative ring, F (K) = K[t, x1, x2, . . . ] is the ring of all
polynomials in variables t, x1, x2, . . . . We use symbol Reg(K) for the totality
of regular elements i.e not a zero divisors: a ∈ Reg(K) implies a × x 6= 0
for each x 6= 0. Let K∞ = {x = (t, x1, x2, . . . )|xi ∈ K, t ∈ K, supp(x),∞}
and Kn = {(x1, x2, . . . , xn)|xi ∈ K}.
Let us consider two polynomial maps P and R of K∞ into K∞:

(t, x1, x2, . . . , ) → (t, P1(t, x1, x2, . . . ), P2(t, x1, x2, . . . ), . . . )
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(t, x1, x2, . . . , ) → (t, R1(t, x1, x2, . . . ), R2(t, x1, x2, . . . ), . . . ),

where Pi(t, x1, x2, . . . ) and Ri(t, x1, x2, . . . ), i = 1, 2, . . . are elements of
F (K).
We consider two families:

fn
t and gt

n of Kn onto Kn sending (x1, x2, . . . , xn) to

(P ′
1(t, x1, x2, . . . ), P ′

2(t, x1, x2, . . . ), . . . , P ′
n(t, x1, x2, . . . xn))

and

(R′
1(t, x1, x2, . . . ), R′

2(t, x1, x2, . . . ), . . . , R′
n(t, x1, x2, . . . xn)),

where P ′
i and R′

i, i = 1, 2, . . . , n correspond to the specialisations xn+1 =
0, xn+2 = 0, . . . of Pi and Ri associated with the pair (P , R). We identify
ft and gt, t ∈ K with the corresponding maps Kn → Kn

Let r = (r1, r2, . . . rt) ∈ Reg(K)t be the tuple of length l(r)) = t. We
introduce Fr, as the composition of maps fr1 , gr2 , . . . , fr2s−1 , gr2s in case of
t = 2s and as composition of fr1 , gr2 , . . . , fr2s−1 , gr2s , fr2s+1 for t = 2s+ 1.
We say that the pair P and R form an arithmetical dynamical system

depending on time t if the following conditions hold

(1) existence of x = (x1, . . . , xn) ∈ Kn such that

ft1(x1, x2, . . . , xn) = ft2(x1, x2, . . . , xn)

for some t1 and t2 implies the equality t1 = t2.
(2) maps ft and gt, t ∈ K are bijections and f−t and g−t are inverse maps
for them.

(3) There is a constant c , c > o such that for each pair of tuples r, b of
regular elements, conditions l(r) ≤ cn, l(r) ≤ cn and Fr(x) = Fb(x) for
some x implies r = b.

If (P,R) form an arithmetical dynamical system, then the inverse of Fr,
l(r) = 2s+1 is Fb, where b = (−r2s+1,−r2s, . . . ,−r1). If l(r) = 2s then F−1

r

is the composition of g−r2s and Fd, where d = (−r2s−1,−r2s−2, . . . ,−r1).
We can treat Kn as the plainspace, refer to the union U of Reg(K)t,

1 < t < cn as the key space and treat

x → Fa(x)

as the encryption map corresponding to the key a. The ciphertext

y = Fa(x)
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can be decrypted by the map F−1
a written above. So the algorithm is sym-

metrical. The property 3 implies that different keys of length < cn produce
distinct ciphertexts.
We introduce the following directed graph φ = φ(n) corresponding to

maps ft
n and gt

n over Kn. Firstly we consider two copies of P (set of points)
and L (set of lines) of the free module Kn. We connect point p ∈ P with
the line l ∈ L by directed arrow if and only if there is t ∈ Reg(K) such that
ft(p) = l. Let t be the colour of such a directed arrow. Additionally we join
l ∈ L and p ∈ P by directed arrow with the colour t if there is t ∈ Reg(K)
such that gt(l) = p. We can consider φ as finite automaton for which all
states are accepting states. We have to chose point p (plaintext) as initial
state. It is easy to see that ft and gt are the transition functions of our
automaton. Let t1, . . . , ts be the ”program” i.e. sequence of colours from
Reg(K). Then the computation is the directed pass p, ft1(p) = p1, gt2(p

1) =
p2, . . . . If s is even then the last vertex is fts(p

s−1), in case of odd s we get
gts(p

s−1) = ps as the result of the computation (encryption). The stop of
the automata corresponds just to the absence of the next colour.
The inverse graph φ(n)−1 can be obtained by reversing of all arrows in

φ. We assume that colours of arrow in φ and its reverse in φ−1 are the same.
So we can consider φ(n)−1 as an automaton as well. Then the decryption
procedure starting from the ciphertext ps corresponds to the pass in φ−1

defined by sequence of colours −ts,−ts−1, . . . ,−t1.
Finally, we can consider well defined projective limit φ of automata φn,

n → ∞ with the transition function Pt(x1, x2, . . . ) = P (t, x1, x2, . . . ) and
Rt(x1, x2, . . . ) = R(t, x1, x2, . . . ). In case of finite K we can use φ as a
Turing machine working with the potentially infinite text in the alphabet
K. Results of [114] allow to formulate the following statement.

Theorem 3. For each commutative ring K there are a cubical polynomial
maps P and R on K∞ forming arithmetical dynamical system with the
constant c ≥ 1/2 such that for each string r of elements from Reg(K) the
polynomial map Fr is cubical.

The example as above has been defined explicitly in [118] in graph the-
oretical terms. The maps P and R will stand further for that particular
example. Corresponding to (P,R) graphs φ(n) are strongly connected i.e.
from the existence of directed pass from vertex v to w follows that w and
v are connected by a directed pass. So connected components of φ(n) are
well defined.
We combine the encryption process Fr corresponding to finite automaton

φ(n) and string r of elements from Reg(K) with two invertible sparse affine
transformation Af1 and Af2 and use the composition Af1 × Fa × Af2 as
encryption map. We refer to such a map as deformation of Fr. In case of
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Af1 = Af2
−1 we use term desynchronization. In case of desynchronization

the ciphertext is always distinct from the plaintext. We assume that Af1 and
Af2 are parts of the key. Deformated or desynchronised encryption is much
more secure, because it prevents adversary to use group automorphisms and
special ordering of variables during his/her attacks.
In the case of deformation with fixed Af1 and Af2 and flexible r the

property that the different passwords of kind r lead to different ciphertexts
is preserved, but the situation, where the plaintext and corresponding ci-
phertext are the same can happen. Anyway the probability of such event is
1/|V |, where V = Kn is the plainspace.

1.4.2. Watermarking equivalence and hidden discrete logarithm

The following statement is published in [118].

Theorem 4. Let φ(n), n ≥ 6 be the directed graph with the vertex set Kn+1

defined above for the pair (P,R).
(i) There are the tuple a = a(x), x ∈ Kn+1 of quadratic polynomials
a2, a3, . . . , at, t = [(k + 2)/4] in K[x0, x1, . . . , xn] such that for each
pair of vertices u and v from the same connected component we have
a(u) = a(v).

(ii) For any t− 1 ring elements xi ∈ K), 2 ≤ t ≤ [(n+2)/4], there exists
a vertex v of φ(n) for which a(v) = (x2, . . . , xt) = (x). So classes of
equivalence relation τ = {(u, v)|a(u) = a(v)} are in one to one corre-
spondence with the tuples in Kt.

(iii) The equivalence class C for the equivalence relation τ on the set
Kn+1∪Kn+1 is isomorphic to the affine variety Kt∪Kt , t = [4/3n]+1
for n = 0, 2, 3 mod 4, t = [4/3n] + 2 for n = 1 mod 4.

We refer to τ as watermarking equivalence and call C as above gener-
alised connected component of the graph,
Let |K| = d and η numerating function i.e bijection between K and

{0, 1, . . . , d − 1}. For each tuple t = (t0, t1, . . . ts) ∈ Ks we consider its
number η(t) = η(t0) + η(t1)d+ · · ·+ η(ts)d

s. Let Reg(K) = b ≥ 2, µ be the
bijection between Reg(K) and {0, 1, . . . , b− 1}. We obtain reg(t) by taking
the string of digits for η(t) = l0 + l1b+ · · ·+ lj−1b

j−1 base b and computing
µ−1 for each digit. So reg(t) = (µ−1(l0), µ

−1(l1), . . . , µ
−1(lj−1) is a string of

characters from the alphabet Reg(K).
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The symmetrical algorithm with the key management (see [108]
and further references).

Correspondents Alice and Bob are taking smallest prime number p from
interval (b[(n+5)/2c], b[(n+5)/2]), where c is some constant > 3/2 and some
number m, m < p. Alice takes the plaintext x, then computes string a(x)
(see previous theorem), then z = η(a(x)) and u = zm mod p. She treats u
as integer and takes string d(x) = reg(u) of characters from Reg(K). Her
encryption is Af1 × Fn

d(x) × Af2. We think that numbers m, c and fixed
maps Af i, i = 1, 2 are parts of the key.
Let Cn(x) = C(x) be the encryption function corresponding to deforma-

tion of dynamical system. The adversary may try to find the factorization
Cn(x) = ((Af1)) × Fn

d(x) × Af2, where Afi, i = 1, 2 are unknown and the

function d(x) is reg((η(a(x)m)), where m is also unknown. During his ac-
tive attack he can compute finite number of values C(xi), i ∈ J and use this
information for finding the factorization. The following heuristic argument
demonstrates that such a task is not easy.
Let as assume that affine transformation Af i, i = 1, 2 are known for

adversary. Notice that finding them can be very difficult. Then the adver-
sary can compute di = Fn

d(xi)
= (Af1)

−1C(xi)(Af2)
−1. The pass between

vertices of the graph is unique. The Dijkstra algorithm is not suitable for
finding the pass because the vertex space of the graph is the plainspace. But
may be large group of automorphisms (see [118] and further references) will
allow to find the pass. Then the adversary computes number bi = η(a(x))m

modula known big prime. Still he is not able to find number m because
of the complexity of discrete logarithm problem. So he has to take for the
set {xi|i ∈ J} the totality of representatives from classes of watermarking
equivalence (transversal). So |J | > O(|K|[1/4]) because of the theorem 2.
We use term hidden discrete logarithm to name modified algorithm be-

cause affine transformations do not allow the adversary to compute the class
of watermarking equivalence containing the plaintext (base of the logarithm)
and pass in the finite automaton corresponding to the value of the logarithm.
Notice that the problem of breaking the key here is considered as a

problem of finding the decomposition of given multivariable polynomial into
the composition (not a product) of special polynomials. So the problem is
different from the one considered in [65]. Anyway it could be very important
and interesting to find the decompositions of cubic multivariable polynomial
Fr into the product of irreducible terms for the case of general string r of
characters from the Reg(K).
The public key algorithms associated with the above dynamical system

have been introduced in [11],[113], [114], [115].
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Let us consider first generalisation and corresponding public key mode.
Let K be general commutative ring and (x0, x1, . . . , xn) be the vector

from Kn+1 (the plainspace). We will compute the string

a(x) = (a2(x), a3(x), . . . , at(x))

which allow us to determine the class of watermarking equivalence contain-
ing x.
Let as consider the symbolic key which is chosen sequence of functions

ki ∈ K[y1, y2, . . . , yt−1], i = 1, 2, . . . , s. We say that the symbolic key is
regular where s ≤ [(n + 5)/2]. Let F(k1,k2,...,ks) be the map sending x to
its image under the composition of Fki(a2(x),...,at(x)), i = 1, 2, . . . , s. The
encryption map will be E = Af1 × F(k1,k2,...,ks) × Af2. It is clear that the
map is invertible and ”hidden discrete logarithm” method is a particular
case of the above general encryption with special regular symbolic key.

Example 1. Let K = Fp for the prime p. Each nonlinear transforma-
tion F(k1,k2,...,ks), s ≥ 1 together with affine transformations of AGLn+1(p)
generates symmetric group Sn+1

p . Reasonable choice for the polynomial ki
in the case of public mode is a polynomial of bounded degree given by the
list of its pseudorandom coefficients.

Example 2. An interesting case for theoretical studies is K = Z. For
the private key algorithm we can chose all ki as Prime Approximation Poly-
nomials (see previous section). Notice that we have infinitely many classes
of watermarking equivalence, they form equiprobable space isomorphic to
Zt.

Example 3. Let K be the ring of Gaussian numbers i.e. complex num-
bers of kind a+bi, where a and b are integers. Then we can think about the
realisation of private key algorithms on Probabilistic Machine (Quantum
Computer, in particular). The result of single probabilistic computation E
will be a vector c from Cn+1. The nearest to c vector from the lattice Kn+1

within the metric of Hilbert Space Cn+1 will be treated as an approximation
of the ciphertext by single computation. Of course we can change the above
metric on some other natural metric for Cn+1 (Eucledean metric of R2n+2,
in particular). The algorithm of example 2 also can be implemented on
Probabilistic Machine ( the result is the nearest to c ∈ Rn+1 vector from
Zn+1. One of the last results on Quantum Cryptography the reader can
find in [1].

Remark. We can consider some union L of classes of watermarking
equivalence and consider the restriction φn

′ of φn onto L. The private and
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public key algorithms corresponding to φn
′ have been considered in [110].

In the section 6 we consider much more general encryption schemes in terms
of special automata corresponding to families of directed algebraic graphs
with special colouring.
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2.1. Graphs with special walks, definitions and motivations

2.1.1. Walks on simple graphs and cryptography

A combinatorial method of encryption with a certain similarity to the
classical scheme of linear coding has been suggested in [107]. The general
idea is to treat vertices of a graph as messages and arcs of a certain length
as encryption tools. We will study the quality of such an encryption in case
of graphs of high girth by comparing the probability to guess the message
(vertex) at random with the probability to break the key, i.e. to guess the
encoding arc. In fact the quality is good for graphs which are close to the
Erdös bound, defined by the Even Cycle Theorem.
In the case of parallelotopic graphs there is a uniform way to match

arcs with strings in the certain alphabet. Among parallelotopic graphs we
distinguish linguistic graphs of affine type whose vertices (messages) and
arcs (encoding tools) both could be tuples over certain finite commutative
ring.
This unit presents the description of graph theoretical approach to sym-

metric encryption as well as to the construction of public key algorithm.
We will show that our approach allows us to construct absolutely secure

algorithms to encrypt a potentially infinite text even with some resistance
to attacks of type (ii) (complexity of the disclosing the key is estimated by
the large constant). In our examples such schemes based on the incidence
graph of generalized polygon.
In case of linguistic graphs, when vertices of graph are tuples over GF (q)

as well as walks on graphs (passwords), we are able to construct absolutely
optimal schemes of encryption which are asymptotical one time pads when
q is growing.
In more practical situation when length of plaintext and password form

a constant ratio r we are able to present an optimal encryption schemes
based on linguistic graphs. They have good resistance to attacks of both
types, resistance to the attack of type (ii) is increasing with growth of r.
Last feature allow us

(1) to avoid in some situations the partition of encryption tools into private
key and public key algorithms

(2) to consider the modifications of our algorithm for the use in public key
fashion.

The theoretical resistance of well-known RSA algorithms to attacks of
type (ii) rests on our believe that nobody can factor numbers fast. In the
case of our encryption schemes based on linguistic graphs the idea based on
fact that finding a pass between 2 given vertices of infinite k- regular tree
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require non polynomial expression f(k, d) for the number of steps (natural
branching process give us k(k− 1)(d−) steps). If the distance d is unknown
the problem getting harder, the complexity f(k, d) is growing, when d is
increasing.
One of the popular mathematical models of the procedure for sending a

message is the following:

(1) treat the information, to be sent, as a vector x = (x1, . . . , xn) ∈ GF (q)n

(2) ”encode” our message by computing Ax = y, where A is (m,n)- matrix
over GF (q)

(3) send the message y (via radio, telephone network, etc.)
(4) our receiver detects a message y′, which may be different from y, due
to transmission errors.

There are several well-known problems associated with the above method:

(i) error detection: warn us if y is not an acceptable message
(ii) error-correction: find an acceptable message y” which is probably y
(iii) investigation of the complexity of decoding the message, and other
problems of cryptography.

For questions of cryptography, it is very convenient to have square matrix
(m = n).
One of the popular schemes of linear coding is the following:
We treat our message as a polynomial f(x) over GF (q) (our tuple is

an array of coefficients of f(x)). The linear coding procedure is just a
multiplication of our f(x) of degree n−1 by a polynomial g(x), deg(g(x)) =
t, t > 0. Thus, y is just an array of coefficients of the polynomial F (x) =
f(x)g(x), m = degF (x) = n+ t− 1. It is easy to see that we could get the
same y′ by a multiplication of our y with a certain matrix B. Again, it is
convenient to treat y′ as an array of coefficients of the polynomial F

′

(x). An
initial error detection check is just to take the remainder r(x) of F

′

(x) by
modulo g(x). If r(x) is not the zero polynomial, then we received a message
with errors. This scheme is very convenient in many situations in Coding
Theory, but it is not a case of n = m.
The general scheme of linear coding is very popular because

(A) our messages (vectors) are strings in an alphabet GF (q) and we have
a natural matching between information and these messages,

(B) encoding tools (matrices) are also strings in the same alphabet,
(C) the encoding procedure is computationally effective.

There are some unpleasant moments possible in linear coding. For in-
stance

(D) if m = n, the initial and encoded messages could be the same!
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It is clear, that in case (D) the initial message is an eigenvector with
eigenvalue 1.
The encryption procedure of linear coding could be quite insecure. For

instance, in case of encryption via multiplication by a polynomial compu-
tation of gcd’s of consecutive messages will break the key fast.
Let us consider the following general idea of walks on graphs as coding

tools.
Let Γ be a simple graph and V (Γ) its set of vertices. Let us refer to the

sequence ρ = (v1, v2, . . . , vn), where vi ∈ V (Γ) , vi 6= vi+2, i = 1, . . . , n− 2,
and vi is adjacent to vi+1, i = 1, . . . , n− 1 and ρ(v1) = vn as the encoding
sequence and the encoded vertex of v1. We refer to (vn, vn−1, . . . , v1) as the
decoding sequence for vn.
Let us imagine that our message is the password to a computer account.

We have the decoded message and s attempts to get into the account. Then
suppose that we use our Γ graph in an ”open algorithm” fashion. This
means that information about the graph is available and the length n of
the encoding sequence is known. Let pkey(Γ, n) be the probability to break
the key, i.e to guess the encoding sequence for one attempt and decode the
message.
Then suppose, that we have no information about the graph. The only

known object is the set of vertices, or partition set containing the message
in the case of a bipartite graph. The only way to get into the account is to
”guess” the message. Let pmes(Γ, n) be the probability of a success in this
”dark” situation.
The purpose of this paper is to consider special cases of graphs, for which

there is some similarity with linear coding, it satisfies some of the properties
A, B, C and completely avoids situation D. For some of them the probability
pkey(Γ, n) can be computed.
We may assume without loss of generality that the edges of k-regular

graph are marked by symbols from some alphabet A (set of colors) in such
way that neighbors of each vertex are of different color. A graph with such
marking is a Deterministic Finite Automaton in case when all states are
accepting and all arrows are invertible. The arc of Γ is determined by its
initial vertex and a string over the alphabet, which is a sequence of colors
for edges from the arc.
In case of parallelotopic graphs, which we shall define below, the col-

oring of edges is induced by the special coloring of vertices, such that the
neighborhood of each vertex is a set of vertices with different colors.
In general situation, we can consider the neighbor w = Na(v) of vertex

v in the graph Γ such that the color of edge {w, v} is a ∈ A.
Let

N(x1, x2, . . . , xt) = Nxt(Nxt−1(. . . (Nx1(v)) . . . ))
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in variables xi ∈ A, v ∈ V (Γ). As previously we will treat an element v of
V (Γ) is a plaintext, and sequence v = v0, v1, v2, . . . , vt, where viΓvi+1 is the
encryption tool. If Nai+1(vi) = vi+1 then the pass is uniquely defined by
string (or word) x1, x2, . . . , xt over the alphabet of ”colors” and the initial
vertex. M and ”inverse” string is xt, xt−1, . . . , x1. Thus we identify walks
on Γ with strings over the M .
The RSA algorithm demonstrated that the information for encryption

(number pq) can be just part of the information for decryption (at least
numbers p and q).
Let us consider such a situation (”encryption with secret”) in case of

graph encryption.
Let φw be the binary relation φw = {(u, v)|v = N(a1, a2, . . . , at)(v)},

w is the string a1, a2, . . . , at. It is clear that for the encryption with the
key w we do not need the information about our graph Γ we need just
graph Γw of the binary relation φw. Let N

w(v) be the operator of taking
neighbor of the vertex v in the graph Γv. The usual situation is that the
complexity of computation Nw is much worse than Nw if you do not know
the decomposition

Nw = Na1(Na2(· · · (Nat) · · · )).

So you may present the function Nw in the form

Nw = Nw1(Nw2(· · · (Nws) · · · )),

where word w is a product (concatenation) of words w1, w2 · · · , ws to make
computation of Nw faster.
It is clear that to find the decomposition above could be a hard task

even in case when the graph Γ is known.
You can give your correspondent the ”public key ” Nw1 , . . . , Nws . He

can encrypt, but he can not decrypt if computation of superpositions of
(Nws)−1, (Nws−1)−1, . . . , (Nw1)−1 is sufficiently hard.
Let us discuss this approach further in the special case of linguistic

graphs.

2.2. Graphs with special walks, definitions and motivations

2.2.1. Families of graphic coding schemes, optimal and
absolutely optimal families

Let us refer to a pair (Γ, n) where Γ is the graph and n is the length
of encoding arcs, as a graphic coding scheme. Let d = d(Γ, n) be given by
(ps(Γ, n))

d = pm(Γ, n). We will use the term quality coefficient for d.
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We call a family (Γi, ni) , V (Γi) ⊂ V (Γi+1), ni ≤ ni+1 a proper family
of coding schemes if lim ps(Γi, ni) = 0, i → ∞.
We call a family (Γi, ni), V (Γi) < V (Γi+1), ni ≤ ni+1 a family of optimal

schemes if the quality function d(i) = d(Γi, ni) is bounded.
It is clear, that an optimal family is a proper family of coding schemes.

For an optimal family such that d(i) tends to 1, we will use the term abso-
lutely optimal.
We can assume that the edges of any graph Γi are marked by elements

of some alphabet Ai, such that |Ai| is a maximal degree of Γi and the
graph with this marking is a Deterministic Finite Automaton (all states are
accepting). Thus the arc of Γi is determined by its initial vertex v and a
string over the alphabet, which is a sequence of marks for edges from the
arc.
Let us examine two special cases of proper families of schemes (Γi, ni).

(i) The case of chosen length of encoding arcs ni = N , and unbounded Ai.

We need to construct a password as a string of given length. There
are no restrictions on the size of our alphabet. Increasing the size of the
alphabet leads to a reduction in the probability of being able to ”break the
key”.

(ii) Case of bounded |Ai| and unbounded encoding length. We have a chosen
alphabet A = Ai and are ready to encode text of any length in this
alphabet.

2.2.2. Graphs of large girth and their cryptographic properties

The girth g = g(Γ) of a graph Γ is the length of the shortest cycle in
the graph. If the length of the encoding arc ρ of the graph of girth g is
less then g, then ρ(v) 6= v for any vertex v, and we never have situation
D. Another important feature of a regular or bipartite biregular graph Γ of
high girth is the existence of a closed formula for the probability pkey(Γ, n)
when n < g/2.

Lemma 1. Let Γ be a k-regular graph of girth g. Then in the case of
length n < g/2 of the decoding sequence, the probability of generating the
correct message by applying the encoding sequence r times at random is
r/(k(k − 1)n−1).

Proof. Let us imagine that our message is the password to a certain account.
We have the decoded message and r attempts to get into the account. So
we are trying r different encoding sequences to recover the correct message.
All of them give us different results because of the inequality for n ensuring
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that there are no C2n. So, the probability to get into the account for r steps
is r/(k(k − 1)n−1).

Analogously, we can check the following statement

Lemma 2. Let Γ be a bipartite (a, b)-biregular graph of girth g. Then
the probability of generating the correct message after r random attempts
applying decoding sequence of the length n < g/2 to a vertex of valency b,
would be r/(b(a − 1)s(b − 1)s−1 for n = 2s and r/(b(a − 1)s(b − 1)s for
n = 2s + 1.

We will use term scheme of high girth for (Γ, n) when n < (g − 2)/2.

Corollary 2. Let Γ be a bipartite (a, b)-biregular graph of girth g, and (Γ, n)
be a scheme of high girth, with inputs of valency b.
Then pkey(Γ, n) = 1/(b(a − 1)[n/2](b− 1)[n/2]).

Corollary 3. We are counting probabilities pmes and pkey in a equiprob-
able space. Thus the condition pmes = pkey corresponds to one time pad
encryption scheme.
Let (Γi, ni) be a family of regular or bipartite biregular schemes of high

girth with non decreasing ki and non decreasing bidegrees ai and bi such that
ai + bi + ni is unbounded. Then (Γi, ni) is a proper family of schemes.

For instance, any sequence of schemes of high girth of unbounded degree
or unbounded length of encoding arcs contains a subsequence of proper
schemes.
The constructions of absolutely optimal families of schemes of high girth

of increasing degree are connected with studies of some well-known problems
in Extremal Graph Theory (see [11], [91]). Let ex(v, n) be, as usual, the
greatest number of edges (size) in a graph on v vertices, which contains no
cycles C3, C4, . . ., Cn.
From Erdös’ Even Cycle Theorem and its modifications [11], [91] it fol-

lows that
ex(v, 2k) ≤ Cv1+1/k (2.1)

where C is a positive constant.
It is easy to see that the magnitude of the extremal family of regular

graphs of given girth and of unbounded degree have to be on the Erdös upper
bound (4.1). This bound is known to be sharp precisely when k = 2, 3,
and 5. Thus the problem of constructing absolutely optimal families of
high girth is a difficult one. A bound similar to (2.1) can be obtained for
the bipartite biregular graphs with a given logarithmic ratio of valencies.
Bipartite biregular families of schemes of high girth have to be on this
bound.
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In the case of the optimal monotonic scheme corresponding to graphs of
degree li and unbounded girth gi we have

gi ≥ γ logli−1(vi) (2.2)

The last formula means that Γi, i = 1, . . . form an infinite family of
graphs of large girth in the sense of N. Biggs [8] (see, also [7], [9], [10], [48],
[57],[59],[61], [64], [66], [69],[70] ) for examples of such families).
We have γ ≤ 2, because of (2.1), but no family has been found for which

γ = 2. Bigger γs correspond to more secure coding schemes. A. Lubotzky
conjectured that γ ≤ 4/3.

2.2.3. Parallelotopic graphs

In this subsection we will consider the parallelotopic graphs for which arcs
can be identified naturally and effectively with words in a certain alphabet
M without marking of edges. We can just paint the vertices of our graph
for this purpose.
We say [107], [110] that Γ = (Γ,M, π) is a parallelotopic graph over a

finite set M if we have a surjective function π : V (Γ) → M such that for
every pair (v,m), v ∈ V (Γ), m ∈ M , there is a unique neighbour u of v
satisfying π(u) = m.
We refer to the function π in the definition above as a labelling. It is

clear that a parallelotopic graph Γ = (Γ,M, π) is an |M |-regular graph. We
can consider M as the set of colors, and π as a coloring of the vertices of Γ
such that for any given vertex v, and any color m, there exists exactly one
neighbour u of v of color m.
Let Γ be a parallelotopic graph. Let N(t, v) be the operator taking

the neighbour u with colour t of a vertex v of a parallelotopic graph Γ. If
(t1, t2, · · · , tn), ti ∈ M is a tuple such that ti 6= ti+2, then

(v, v1 = N(t1, v), v2 = N(t2, v1), · · · , vn = N(tn, vn−1))

is the arc of the graph Γ which we can consider as an encoding arc for any
chosen vertex v.
Let us refer to this tuple ρ = (t1, · · · , tn) over M as an encoding tuple.

It is clear that ρ−1 = (tn, tn−1, · · · , t1) is the ”decoding tuple”, because it
corresponds to the decoding arc.
It is reasonable to consider the following modification of parallelotopic

graphs.
Let Γ be a bipartite graph with partition sets Pi, i = 1, 2. Let M be

a disjoint union of finite sets M1 and M2. We say that Γ is a bipartite
parallelotopic graph over (M1,M2) if there exists a function π : V (Γ) → M
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such that if p ∈ Pi, then π(p) ∈ Mi and for every pair (p, j), p ∈ Pi, j ∈ Mi,
there is a unique neighbour u with given π(u) = j.
It is clear that the bipartite parallelotopic graph Γ is a (|M1|, |M2|) -

biregular graph.
We refer also to the function π in the definition of bipartite parallelotopic

graph also as a labelling. We will often omit the term ”bipartite ”, because
all our graphs are bipartite.
A surjective homomorphism η : Γ1 → Γ2 of bipartite parallelotopic

graphs Γ1, V (Γ1) = P1∪P2 and Γ2, V (Γ2) = Q1∪Q2 over the same(M1,M2)
with labellings π1 and π2 such that π2(η(v)) = π1(v) and η(v) ∈ Qi iff v ∈ Pi

is referred to as a parallelotopic morphism of graphs.
In this situation, we refer to a graph Γ1 as the parallelotopic cover

of Γ2 and a graph Γ2 as a parallelotopic quotient of Γ1. It is clear that
parallelotopic morphism is local isomorphism.
Let Spec(Γ) be the spectrum of the graph Γ, i.e., the set of eigenvalues

of the adjacency matrix for Γ.

Lemma 3. (see [107]) Let φ : Γ1 → Γ2 be a parallelotopic morphism of
finite bipartite graphs Γ1 and Γ2. Then Spec(Γ2) is a subset of Spec(Γ1).

Let M t be the Cartesian product of t copies of the set M .
We say that the graph Γ is a linguistic graph over the set M with pa-

rameters m,k, r, s if
(i) Γ is a bipartite parallelotopic graph over (M1,M2),M1 = M r,M2 = M s

with the set of points I = Mm (inputs)
(ii) set of lines O = Mk (outputs).
(i.e. Mm andMk are the partition sets of Γ). It is clear that m+ r = k+ s.

We use the term linguistic coding scheme for a pair (Γ, n), where Γ is
linguistic graph and n < g is the length of encoding sequences.
We choose a bipartite graph in the definition above because regular trees

are infinite bipartite graphs and many biregular finite graphs of high girth
can be obtained as their quotients (homomorphic images).
For linguistic graphs our messages and coding tools are words over the

alphabet M and we can use the usual matching between real information
and vertices of our graph.
We use the term linguistic graph over GF (q) of affine type when we have

a linguistic graph with alphabet M = GF (q) and the set of neighbours of
any vertex v is an affine manifold over GF (q), i.e. is the totality of solutions
of a certain system of linear equations. Here, of course, the similarity with
the classical scheme, will be stronger: our messages and encoding tools are
tuples over GF (q) again and we have some linearity conditions.
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Let a linguistic graph Γ of affine type satisfy the additional condition:
operator N(t, x), t = (y1, . . . , ys), x = (x1, . . . , xm), x ∈ P (x ∈ L) can
be given by polynomial expressions fP (respectively fL) in the variables
y1, · · · , yr, x1, · · · , xn depending only on the type of vertex.
Then the ”complexity coefficient” L(Γ) = (deg fP +deg fL)/2 is a rough

measure of the complexity of encoding procedure. The following section con-
tains examples of linguistic graphs of both ”good” quality and complexity
coefficients.

2.3. Existence of graphs with special walks

In the previous section we gave several definitions of graphs with special
walks. We also considered special morphisms and spectral properties of such
graphs. We will be in trouble if no such objects exist. To show the existence
of all objects defined above we need an example of a family of absolutely
optimal linguistic graphs of affine type. We consider a several families of
such graphs in this section.

Example 1. Let P = {(x1, x2)|xi ∈ GF (q)}, L = {[y1, y2]|yi ∈ GF (q)}.
Let us define an incidence relation I1 as: (a, b)I1[x, y] if and only if y− b =
xa. Let us consider the function π : P ∪ L → GF (q), such that π((x1, x2)) =
x1, π([y1, y2]) = y1. It is easy to check that π is a labelling for the graph
I1 = I1q. It defines a linguistic coding scheme (I1, 2) with parameters (1,
1, 2, 2) of affine type over GF (q). We will show that the girth of I1 is at
least 6. It is clear that the complexity L(I1q) = 2, pl(I1q, 2) = 1/q(q − 1)
and pd = 1/(q2). Thus (I1q, 2) is a family of absolutely optimal linguistic
schemes of affine type.

Example 2. Let

P = {(x1, x2, x3)|xi ∈ GF (q)},
L = {[y1, y2, y3]|yi ∈ GF (q)}.

Let us define an incidence relation I2 as: (a, b, c)I2[x, y, z] if and only if

y − b = xa

z − c = xb

Let us assume that π((x1, x2, x3)) = x1 and π([y1, y2, y3]) = y1. It
is clear, that I2 defines a family of linguistic schemes of affine type over
GF (q) with parameters (1, 1, 3, 3). The complexity L(I2q) = 5/2 because
degfP = 2 and degfL = 3. We will show that the girth of I2 is at least 8.
It is clear that ps(I2q, 3) = 1/q(q − 1)2 and pm(I2q, 3) is q

3. Thus (I2q, 3)
is a family of absolutely optimal linguistic schemes of affine type.
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Example 3. Let

P = {(x1, x2, x3, x4, x5)|xi ∈ GF (q)},
L = {[y1, y2, y3, y4, y5]|yi ∈ GF (q)}.

Let us define an incidence relation I3 = I3q as: (a, b, c, d, e)I3[x, y, z, u, v]
if and only if

y − b = xa

z − 2c = −2xb

u− 3d = −3xc

2v − 3e = 3zb− 3yc− ua

From the equations above, it follows that π: π((x1, x2, x3, x4, x5)) = x1
and π([y1, y2, y3, y4, y5]) = y1 is a labelling for I3q.
We will show that (see Proposition 9.7), for charGF (q) > 3 the girth

of this graph is at least 12. Directly from the equations above we can get
that I3 defines the linguistic coding scheme with parameters (1, 1, 5, 5) of
affine type over GF (q). The complexity L(I3q) is 7/3, because of degfL = 3
and degfP = 4. It is clear that ps = q(q − 1)4, pm = q5 and (I3q, 5) is an
absolutely optimal family of schemes.

Example 4. Let GF (q2) be the quadratic extension of GF (q) and x → xq

be the Frobenius automorphism of GF (q2). Let

P = {(x1, x2, x3)|x1 ∈ GF (q), x2 ∈ GF (q2), x3 ∈ GF (q)},
L = {[y1, y2, y3]|y1 ∈ GF (q2), y2 ∈ GF (q2), y3 ∈ GF (q)}.

Let us define the incidence relation I4 = I4q as: (a, b, c)I4[x, y, z] if and
only if

y − b = xa

z − c = ay + ayq.

It is clear that rules π(x1, x2, x3) = x1 and π([y1, y2, y3]) = y1 define
the parallelotopic scheme of affine type over the GF (q) (but not over the
GF (q2)). Its parameters are (1, 2, 4, 5). Complexity of L(I4) for this scheme
of affine type is 2 because {fP , fL} = {2, 2}. We will show that the girth
of I4 is at least 8 (see Proposition 6.7). It is easy to check that I4(q) is a
family of absolutely optimal graphs.

Examples 1 – 3 give us families of graphs with sizes on the Erdös bound,
and Example 4 gives examples of graphs with the sizes on the similar bound
for biregular graphs of given degree. All the examples above are absolutely
optimal families of a coding scheme.
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2.4. Folders of graphs

The following proposition follows directly from the lemma 2.1.

Proposition 1. Let Γi be a family of regular or bipartite biregular graphs
of encreasing girth gi and bounded degree. Then (Γi, [(gi−1)/2]) is a proper
family of schemes.

A natural way of constructing families of regular or bipartite biregular
graphs of increasing girth is taking successive finite quotients (homomorphic
images) of regular or biregular trees, which are graphs of infinite girth.
We need homomorphisms which are local isomorphisms, because in this

case all quotients will have the same valency as the initial tree. If the initial
tree is the projective limit of our quotients, then the quotients form a family
of graphs of increasing girth.
So instead of using algebraic tools like polynomials over finite fields, we

can just go to an infinite forest, choose a regular tree, cut it into proper
pieces and relax. In fact, even doing the lumberjack’s job in a fresh combi-
natorial air we can feel the smell of algebraic moonshine.

Folders of graphs (see [110])

For the purpose of convenient encoding by graphs of ”potentially infi-
nite” text over a finite alphabet (like the External alphabet of a Turing
machine), we need an infinite family of parallelotopic graphs of increasing
girth, with a hereditary property: we can add a new part of text, and
encode the entire text in a larger graph, in such a way that the encoding
of the initial part will be the same. This leads to the idea of a folder of
parallelotopic graphs.
A folder F is a family Γj, j = 1, 2, . . . of graphs and homomorphisms ti,j

satisfying the following properties:

(P1) The Γi are parallelotopic (or bipartite parallelotopic) graphs over a
finite set M with local labellings denoted by π.

(P2) For any pair i, j of positive integers, i > j, there is a parallelotopic
morphism ti,j from Γi to Γj.

(P3) ti,j ◦ tj,k = ti,k for i > j > k (commutative properties)

Let us assume the existence of the projective limit Γ of Γi. We refer to
Γ as the cover of folder Γi.
If Γ is a forest we refer to the folder as a free parallelotopic (bipartite

parallelotopic) folder. It is clear that in this case the Γi, i = 1, . . . form an
infinite family of graphs of unbounded girth. There is a canonical parallelo-
topic morphism ti : Γ → Γi. If T is a connected component of the forest
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Γ then ti(T ) is a connected component of ti(Γ) and family ti(T ) is a free
folder with the cover T .

Remark 1. Let Γi be a free folder over the GF (q) , where the cover Γ
is a q-regular tree. We could construct the ”Theory of Γi-codes” in which
the distance in the graph Γi would play the role of a Hamming metric
in the classical case of linear codes. Of course, the Hamming metric is
distance-transitive, i.e., for each k the automorphism group acts transitively
on pairs of vectors at a distance k. The distance in the graph Γi may not be
distance transitive, but we have an ”asymptotical” distance transitivity, be-
cause of the distance transitivity of the tree Γ and the fact that lim(Γi) = Γ.

Remark 2. Let φ : Γ1 → Γ2 be a parallelotopic morphism of parallelo-
topic graphs over M and s = (t1, t2, · · · , tk) be an encryption tuple, then
the operators enci : v → vs, v ∈ V (Γi), i = 1, 2 satisfy

enc1φ = enc2

Let ρ : Γ1 → Γ2 be a parallelotopic morphism of (bipartite parallelo-
topic) graphs over the same set M such that V (Γ1) is a Cartesian product
D × V (Γ2) for some set D and ρ is the canonical projection ρ((d, v)) → v,
d ∈ D, v ∈ V (Γ2). We will say that ρ is a triangular parallelotopic mor-
phism. For such a morphism, hereditary properties of encryption schemes
(Γ1, k) and (Γ2, k) are stronger. We will use the word triangular instead of
parallelotopic to get triangular cover and triangular quotient. We will use
the term triangular folder for a parallelotopic folder for which all morphisms
are triangular.

Let ρ: Γ1 → Γ2 be a triangular morphism from a graph Γ1 to Γ2. Let
us consider the sets of vertices V1 = V (Γ1) and V2 = V (Γ2) and the vector
spaces Fi, i = 1, 2 consisting of the sets of functions {f |Vi → R} over the
field R of real numbers and subspace

Fρ = {f ∈ F1|(ρ(x) = ρ(y)) → (f(x) = f(y))}.
The vectors bu , u ∈ V1 such that bu(u) = 1 and bu(x) = 0, x ∈ V1 − {u}

form a natural basis of F1 and the elements cv =
∑

u|f(u)=v bu, v ∈ V2, form
a basis of Fη.
Let Ai , i = 1, 2 be the adjacency matrix for Γi. In the triangular case Fρ

is an invariant subspace of A1 and the restriction of A1 to Fρ coincides with
A2 with respect to some basis cv, v ∈ V2. Let ρ be the natural projection
of Fρ on F2.
We then have:
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Lemma 4. If Γ1 is a finite triangular cover of Γ2, then

(i) Spec(Γ2) is a subset of Spec(Γ1).
(ii) If f2 is an eigenvector of Γ2, then there is an eigenvector f1 of Γ1

from Fη , such that f1 = ρ(f2) and the eigenvectors fi, i = 1, 2, have the
same eigenvalue.

2.5. Existence of free triangular optimal folders

In this section we will use the graphs D(k, q) ([57], [59]) for the encryp-
tion procedure.
Let q be a prime power, and let P and L be two countably infinite

dimensional vector spaces over GF (q). Elements of P will be called points
and those of L lines. To distinguish points from lines we use parentheses and
brackets: If x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous
to adopt the notation for coordinates of points and lines introduced in [50]:

(p) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l22, l
′
22, l23, . . . , lii, l

′
ii, li,i+1, li+1,i, . . .).

We now define an incidence structure (P,L, I) as follows. We say the
point (p) is incident with the line [l], and we write (p)I[l], if the following
relations between their coordinates hold:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11 (2.3)

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(The last four relations are defined for i ≥ 2.) This incidence struc-
ture (P,L, I) we denote as D(q). We speak now of the incidence graph
of (P,L, I), which has the vertex set P ∪ L and edge set consisting of all
pairs {(p), [l]} for which (p)I[l].
To facilitate notation in future results, it will be convenient for us to

define



2.5. Existence of free triangular optimal folders 37

p−1,0 = l0,−1 = p1,0 = l0,1 = 0,

p0,0 = l0,0 = −1,

p′0,0 = l′0,0 = 1,

p0,1 = p2,

l1,0 = l1,

l′1,1 = l1,1,

p′1,1 = p1,1,

and to rewrite (2.3) in the form:

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

for i = 0, 1, 2, . . .
Notice that for i = 0, the four conditions (2.3) are satisfied by every

point and line, and, for i = 1, the first two equations coincide and give
l1,1 − p1,1 = l1p1.
For each positive integer k ≥ 2 we obtain an incidence structure

(Pk, Lk, Ik) as follows. First, Pk and Lk are obtained from P and L, respec-
tively, by simply projecting each vector onto its k initial coordinates. The
incidence Ik is then defined by imposing the first k−1 incidence relations
and ignoring all others. For fixed q, the incidence graph corresponding to
the structure (Pk, Lk, Ik) is denoted by D(k, q). It is convenient to define
D(1, q) to be equal to D(2, q). The properties of the graphs D(k, q) that we
are concerned with described in the following Proposition.

Proposition 2. [57] Let q be a prime power, and k ≥ 2. Then

(i) D(k, q) is a q–regular bipartite graph of order 2qk ;
(ii) for odd k, g(D(k, q)) ≥ k + 5;
(iii) for odd k and q ≡ 1 (mod k+5

2 ), g(D(k, q)) = k + 5.

The following statement follows directly from Proposition 2 and the
formula for a neighbour of the given vertex.

Proposition 3. The graph D(k, q), q odd, is a parallelotopic graph with the
labelling π : π((p)) = p2, π([l]) = l1.

(D(k, q), [k + 3/2]), k = 1, 2, . . . form an optimal family of linguistic
coding schemes over GF (q) of affine type with unbounded girth.
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Scheme (D(k, q), [(k + 3)/2]) has parameters (1, 1, k, k), complexity co-
efficient 2 and quality coefficient dk ≤ k/([k + 5)/2)]) ≤ 2.

We have a natural one to one correspondence between the coordinates
2,3, . . ., n, · · · of tuples (points or lines) and equations. It is convenient for
us to rename by i+2 the coordinate which corresponds to the equation with
the number i and write [l] = [l1, l3, . . . , ln, . . .] and (p) = (p1, p3, . . . , pn, . . .)
(line and point in ”natural coordinates”).
Let ηi be the map ”deleting all coordinates with numbers > i” from

D(q) to D(i, q), and ηi,j be map ”deleting all coordinates with numbers > i
” from D(j, q), j > i into D(i, q).
The following statement follows directly from the definitions:

Proposition 4. (see, [57], [59]) D(i, q), ηi,j is a free triangular linguistic
folder over GF (q). It has a forest D(q) as a cover.

Example 5. Let k ≥ 6, t = [(k + 2)/4], and let

u = (ui, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · )
be a vertex of D(k, q). (It does not matter whether u is a point or a line).
For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑

i=0,m

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). (Here we define p0,−1 = l0,−1 = p1,0 =
l0,1 = 0, p00 = l00 = −1, p0,1 = p1, l1,0 = l1, l

′
11 = l11, p

′
1,1 = p1,1).

In [62] the following statement was proved.

Proposition 5. . Let u and v be vertices from the same component of
D(k, q). Then a(u) = a(v). Moreover, for any t − 1 field elements xi ∈
GF (q), 2 ≤ it ≥ [(k + 2)/4], there exists a vertex v of D(k, q) for which

a(v) = (x2, . . . , xt) = (x).

Let us consider the following equivalence relation τ : uτv iff a(u) = a(v)
on the set P ∪ L of vertices of D(k, q) (D(q)). The equivalence class of τ
containing the vertex v satisfying a(v) = (x) can be considered as the set
of vertices for the induced subgraph EQ(x)(k, q) (EQ(x)(q)) of the graph
D(k, q) (respectively, D(q)). When (x) = (0, · · · , 0), we will omit the index
v and write simply EQ(k, q).
Let CD(k, q) be the connected component of D(k, q) which contains

(0, 0, . . . , 0). Let τ ′ be an equivalence relation on V (D(k,K)) (D(q)) such
that the equivalences classes are the totality of connected components of
this graph. According to Proposition 5, uτv implies uτ ′v. If char GF (q) is
an odd number, the converse of the last proposition is true [62].
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Proposition 6. Let q be an odd number. Vertices u and v of D(q) (D(k, q))
belong to the same connected component iff a(u) = a(v), i.e., τ = τ ′ and
EQ(q) = CD(q) (EQ(k, q) = CD(k, q)).

The condition charGF (q) 6= 2 in the last proposition is essential. For
instance, the graph EQ(k, 4)), k > 3, contains 2 isomorphic connected
components. Clearly EQ(k, 2) is a union of cycles CD(k, 2). Thus neither
EQ(k, 2) nor CD(k, 2) is an interesting family of graphs of high girth. But
the case of graphs EQ(k, q), q is a power of 2, q > 2 is very important for
coding theory.

Corollary 4. Let us consider a general vertex

x = (xj , x1,1, x2,1, x1,2, · · · , xi,i, x
′

i,i, xi+1,i, xi,i+1, · · · ),

j = 1 or 2, i = 2, 3, · · · of the connected component CD(k, F ), which con-
tains a chosen vertex v. Then coordinates xi,i, xi,i+1, xi+1,i can be chosen
independently as “free parameters” from F and x′i,i could be computed suc-
cesively as the unique solutions of the equations ai(x) = ai(v), i = 1, . . ..

Theorem 5.

(i) EQ(k, q), ηi,j is a free triangular linguistic folder with complexity co-
efficient 2 for the forest EQ(k, q).

(ii) Let dk be a quality coefficient for the EQ(k, q). Then dk tends to 1.5
as k → ∞.

Proof. Statement (i) follows from Theorem 7.3. The cardinality of the set of
points (lines) for EQ(k, q) is a linear function of the form 3/4+ c where c is
a certain constant, and g(EQ(k, q)) ≥ k+5. Thus dk = (3/4k+c)/(k+5)/2
giving (ii).

Remark 1. CD(k, q) is the family of linguistic coding schemes of affine
type with the smallest function of cycle growth among the known families
of unbounded degree and increasing girth.

Remark 2. The graph EQ(k, 4) form the family of linguistic coding
schemes with the best known quality coefficient.
The existence of folders of monotonic linguistic coding schemes of high

girth over any finite field is important for the encryption of ”potentially
infinite texts” . For instance, if we have a text in English, we can consider an
injective function f from the alphabet, which contains letters, comma, dot,
empty space, to GF (29). We could apply the function f to each character
in our text to identify of it with an element of the finite field. After that
we can use a coding by a folder of linguistic graph of increasing girth of
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affine type over GF (29), which will guarantee that the encoded text will
be different from the initial text. Of course we can have some semantic
similarity, between initial and encoded text. For instance, in the case of
Galsworthy’s ”Forsythe Saga” the encoded text theoretically could be a
translation of it into Spanish, but the probability of this happening is very
small.

2.6. Parallelotopic graphs of large girth and asymmetric

algorithms

2.6.1. Linguistic graphs as a public keys

Let Γ be a parallelotopic graph of girth g, i.e. the graph without cycles
of length < g. In this case we will use a little bit different matching between
arcs and strings of colors then in case of general regular graphs.
Let w = Na(v) stands now for a neighbor of vertex v in graph Γ such

that the color of the neighbor is a ∈ M . As it was before

N(x1, x2, . . . , xt) = Nxt(Nxt−1(. . . (Nx1(v)) . . . ))

in variables xi ∈ M , v ∈ V (Γ). As previously we will treat an element v of
V (Γ) is a plaintext, and sequence v = v0, v1, v2, . . . , vt, where viΓvi+1 is the
encryption tool. If Nai+1(vi) = vi+1 then the pass is uniquely defined by
string (or word) a1, a2, . . . , at over the alphabet of ”colors”M and ”inverse”
string at−1, at−2, . . . , a0, here a0 is the color of plaintext defines ”decrypting”
sequence of vertices. Thus we identify walks on Γ with strings over the M .
Let us discuss the approach of section 3 in the case of linguistic graphs

Γ of rational (polynomial) type over commutative ring K.
In case of such graphs M = K and the function Na(v) of taking neigh-

bor of vertex v = (y1, y2, . . . , yt) ∈ I ∪O is a polynomial expression from
variables yi, i = 1, k. A degree of polynomial linguistic graph is maximum
degrees of polynomial expressions for each Na(v) in variables yi.
In this case Nwi , i = 1, 2, . . . , s are polynomial expressions Pi over the

commutative field K of degree di. For simplicity let us assume that the
graph is regular, i.e. O = I = Kn, and polynomial expression Nw is given
by the list of its coefficients. If degNw = d then encryption of the given
vertex could be done for not more than for O((nd) elementary steps. So, if
your ”public key” is given as the list of coefficients of monomial expressions
in Nw, then the complexity of encoding procedure for your correspondent
will be proportional to a size of this list.
You can do your encryption (or decryption) fast because your know

factors Nai of N
w and their inverses.
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What your correspondent need for the decryption of given message
(b1, b2, . . . , bn)? He has to solve the system of polynomial equations

Nw(x1, x2, . . . , xn) = (b1, b2, . . . , bn).

This task is a classical hard problem of algebra (see [45] and further
references). The system above can be investigated for dO(n2) steps, where d
is the maximal degree of polynomials. We can do better (dCn) if we know
that the system is consistent.
If you have a family of polynomial linguistic graph of bounded degree,

you may choose the dimension n such that your correspondent could encrypt
but could not decrypt and use graph encryption in ”public key fashion”,
because we should use the gap between computations of polynomial in given
point and investigation of given system of equations.

2.6.2. Graph invariants as hidden parameters, dynamical keys

Let us consider the encryption scheme (D(k, q), t), t = (k + 2)/4 − 1
for which transformation u → N(b1, b2, . . . , bs)(u) = c, u ∈ D(k, q) maps
plaintext p to the ciphertext c. We can upgrade the encryption process by
the following procedure.
Let us treat parameters bi as variables and use the substitution bi =

Fi(a2(u), a3(u), . . . , at+1(u) where a2(u), . . . at+1(u) are invariants of the con-
nected component which contains u, Fi are chosen polynomial expressions
from t-variables. Your correspondent knows just the transformation u → c,
where

c(u) = N(F1(a2(u), . . . , at+1(u)), . . . , Fk(a2(u), . . . , at+1(u))

is given by the list of coefficients (public key). He can encrypt but could
not decrypt in case of properly chosen parameters and polynomials Fi,
i = 1, . . . , k. You know graph D(k, q) and its invariants ai(k). If you
apply to e consecutively transformations Nds−1 , Nds−2 , . . . , Nd1 , Nd0 , where
di = Fi(a2(e), . . . , at+1(e)), i = 1, . . . , k−1 and d0 is the colour of plaintext,
you obtain the plaintext u. Here we use the fact that u and c are vertices
from the same component of D(k, q). In the package CRYPTIM we use this
scheme in case s = t, degFi ≤ 1, in particular, for the problem of digital
signatures.

Remark 1. The probability to have same invariants a2, . . . , at+1 for
two random messages is about 1/qt.
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Remark 2. If we want to speed up the computation of c(u) we may
present it to our correspondent as product of several factors. For instance,
we may construct such factors as a products of several Nbi(x).

2.7. The jump to commutative rings, dynamical systems

and fast implementations

We consider below the natural generalisation D(n.K) of the family of
graphs D(n, q), where n > 2 is positive integer and K is a commutative
ring. New family is obtained just by change of Fq on K. Properties of such
graphs over rings were considered in [107]. Similarly to D(n, q), new graphs
are linguistic graphs, the family D(n,K) n = 1, 2, . . . defines the projective
limit D(K), connected components of D(K) can be observed via quadratic
invariants. The encryption algorithms as above can be formally defined for
more general graphs D(n,K).
Unfortunately in the case of existence of zero divisors in the ring K the

infinite graph D(K) is not a tree. The girth for the members of the family
D(n,K) n = 1, 2, . . . is bounded by certain constant. So for finite rings we
obtaining a family of increasing girth if and only if K = Fq.
Fortunately there is an option to work with the special family of directed

graphs defined in terms of simple graphs D(n,K) which allow us to save a
situation.
let P and L be two copies of Cartesian power KN , where K is the

commutative ring and N is the set of positive integer numbers. Elements
of P will be called points and those of L lines.
To distinguish points from lines we use parentheses and brackets: If

x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous to keep the
notation for co-ordinates of points and lines of D(q) for the case of general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of
elements from K, such that only finite number of components are different
from zero.

We now define an incidence structure (P,L, I) as follows. We say the
point (p) is incident with the line [l], and we write (p)I[l], if the relations
(2. 3) between their co-ordinates hold:

For each positive integer k ≥ 2we obtain an incidence structure (Pk, Lk, Ik)
as follows. First, Pk and Lk are obtained from P and L, respectively, by
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simply projecting each vector onto its k initial coordinates with respect to
the above order. The incidence Ik is then defined by imposing the first
k−1 incidence equations and ignoring all others. The incidence graph cor-
responding to the structure (Pk, Lk, Ik) is denoted by D(k,K).
Now we will construct aspecial directed graphs. E. Moore [75] used term

tactical configuration of order (s, t) for biregular bipartite simple graphs with
bidegrees s + 1 and r + 1. It corresponds to incidence structure with the
point set P , line set L and symmetric incidence relation I. Its size can be
computed as |P |(s + 1) or |L|(t+ 1).
Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical

configuration with partition sets P (point set) and L (line set) and incidence
relation I. We define the following irreflexive binary relation φ on the set
F .
Let (P,L, I) be the incidence structure corresponding to regular tactical

configuration of order t.
Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈ L, p ∈ P, lIp} be

two copies of the totality of flags for (P,L, I). Brackets and parenthesis allow
us to distinguish elements from F1 and F2. Let DF (I) be the directed graph
(double directed flag graph) on the disjoint union of F1 with F2 defined by
the following rules

(i) (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 6= l2,
(ii) [l2, p2] → (l1, p1) if and only if l1 = l2 and p1 6= p2.

Let DE(n,K) (DE(K)) be the double directed graph of the bipartite
graph D(n,K) (D(K), respectively). Remember, that we have the arc e of
kind (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 6= l2. Let us assume that
the colour ρ(e) of arc e is l11,0 − l21,0.

Recall, that we have the arc e′ of kind [l2, p2] → (l1, p1) if and only if
l1 = l2 and p1 6= p2. let us assume that the colour ρ(e′) of arc e′ is p11,0−p21,0.
If K is finite, then the cardinality of the colour set is (|K| − 1).
Graph DE(k,K) is the double flag graph for D(k,K). We assume that

k ≥ 6and t = [(k + 2)/4]. Each flag f from F1 ∪ F2 contains the unique
point u u = (u01, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · ) of D(k,K) . For every
r, 2 ≤ r ≤ t, let

ar(f) = ar(u) =
∑

i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at).
Let RegK be the totality of regular elements, i.e. not zero divisors.

Let us delete all arrows with colour, which is a zero divisor. New graph
RDE(t,K) (RD(K)) with the induced colouring is the automaton in the
alphabet Reg(K).
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Let Pt(x1,0, x0,1, x11, . . . ) and Rt(x1,0, x0,1, x11, . . . ) are the transition
function of infinite graph RD(K) of taking the neighbour of vertex from
the first and second copy of the flag set for D(K) alongside the arrow of
colour t. As it follows from the results of [118] functions Pt and Rt define the
arithmetical dynamical system. It means that we can use general private
and public keys algorithms which were considered in Chapter 1.
Let us consider the description of such algorithms in the particular case

of the dynamical system corresponding to the family of directed graphs
RDE(n,K). We assume that the finite ring K contains at least 3 regular
elements (non zero divisors). We start from the public key encryption.
The set of vertices of the graph RDE(n,K) is a union of two copies free

module Kn+1. Let C(Kn+1) be the Cremona group of the variety Kn+1

containing all bijective polynomial maps for which the inverse map is also
polynomial. In the simplest case of finite field Fp, where p is a prime num-
ber C(Fp

n+1) is a symmetric group Spn+1. The Cremona group C(Kn+1)
contains the group of all affine invertible transformations, i.e. transfor-
mation of kind x → xA + b, where x = (x1, x2, . . . , xn+1) ∈ C(Kn+1),
b = (b1, b2, . . . , bn+1) is a chosen vector from C(Kn+1) and A is a matrix of
liner invertible transformation of Kn+1.
Graph RDE(n,K) is a bipartite directed graph. We assume that the

plaintext Kn+1 is a point flag f = (p1, p2, . . . , pn+1) (a pair containing
point (p1, p2, . . . , pn) of D(n,K) and the colour pn+1 of neighbouring line
from D(n,K)). Alice choses two invertible sparse affine transformations
T1 and T2 of K

n+1. and the string (β1, β2, . . . , βl) of regular colours for
RDE(n,K), such that βi 6= −βi+1 for i = 1, 2, . . . , l − 1 (irreducibility
condition). This data form the key. Alice keeps chosen parameters secret in
our implementation we use affine transformations which maps f to string
(p1+a2p2+a3p3+ · · ·+an+1pn+1, p2, p3, . . . , pn+1). Let Nα, α ∈ Reg(K) be
the operator of taking the neighbour of vertex v alongside the arrow with
the colour α in the directed graph RDE(n,K). She computes symbolically
the map N l = Nβ1 × Nβ2 · · · × Nβl

. Alice computes the public rule g as
the symbolic composition of T1, N and T2. The case T2 = T1

−1 is a special
form of general algorithm.
In the case of RDE(k,K) the degree of transformation N l is 3, indepen-

dently on the choice of length l, parameter k and ring K. So the public rule
is a cubical polynomial map of the free module Kn+1 onto itself. In case of
finite field the algorithm is equivalent to the public rule considered in [99].
The public user (Bob) has the cubical map g only. He sends to Alice the
encrypted massage g(f).
Notice that Alice can decrypt with numerically implemented

D = T2
−1N−βl

×N−β2 · · · ×N−β1T1
−1.
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Functions T1N
lT2 and E form her private key algorithm.

2.7.1. Time evaluation of the private key encryption for Alice

We have implemented computer application [54], which uses family of
graphs RDE(n,K) for private key cryptography. To achieve high speed
property, commutative ring K = Z2k , k ∈ {8, 16, 32}, with operations +,×
modulo 2k. Parameter n stands for the length of plaintext (input data) and
the length of ciphertext. We mark by G1 the algorithm with k = 8, by
G2 the algorithm with k = 16, and by G4 the algorithm with k = 32. So
Gi, i ∈ 1, 2, 4 denotes the number of bytes used in the alphabet (and the
size of 1 character in the string).
The alphabet for password is the same K as for the plaintext. For

encryption we use the scheme presented in the previous unit.
All the test were run on computer with parameters:

— AMD Athlon 1.46 GHz processor
— 1 GB RAM memory
— Windows XP operating system.

The program was written in Java language. Well known algorithms
RC4 and DES which were used for comparison have been taken from Java
standard library for cryptography purposes - javax.crypto.

2.7.2. Comparison of our symmetric algorithm with RC4

RC4 is a well known and widely used stream cipher algorithm. Protocols
SSL (to protect Internet traffic) and WEP (to secure wireless networks) uses
it as an option. Nowadays RC4 is not secure enough and not recommended
for use in new system. Anyway we chose it for comparison, because of its
popularity and high speed.
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File [MB] RC4 [s] G1 [s] G2 [s] G4 [s]

4 0.15 0.67 0.19 0.08

16.1 0.58 2.45 0.71 0.30

38.7 1.75 5.79 1.68 0.66

62.3 2.24 9.25 2.60 1.09

121.3 4.41 18.13 5.14 2.13

174.2 6.30 25.92 7.35 2.98

Figure 2.1. RC4 vs high girth graph based algorithm (128 bit password)

RC4 is not dependent on password length in terms of complexity, and
our algorithm is. Longer password makes us do more steps between vertices
of graph. So for fair comparison we have used fixed password length equal
suggested upper bound for RC4 (16 Bytes).

File [MB] G1 [s] G2 [s] G4 [s]

4 0.04 0.02 0.01

16.1 0.12 0.10 0.08

38.7 0.32 0.24 0.20

62.3 0.50 0.40 0.30

121.3 0.96 0.76 0.60

174.2 1.39 0.96 0.74

Table 2.1. Time grow for AnEāA
−1
n for chosen operator An

2.7.3. Comparison with DES

In the next test we have compared our algorithm with popular block
cipher DES (Data Encryption Standard). DES is more complicated ,and
have better cryptographical properties than RC4, but it is much slower.
The version of DES implemented in Java library uses 64 bit password

and makes from it 56 bit key (due to documentation). In our comparison
(see figure (2.2)) we used the password of the same length.
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File [MB] DES [s] G1 [s] G2 [s] G4 [s]

4 0.81 0.35 0.11 0.05

16.1 2.99 1.23 0.40 0.18

38.7 7.24 2.90 0.92 0.41

62.3 11.69 4.60 1.49 0.68

121.3 22.85 9.03 2.85 1.25

174.2 33.60 13.00 4.08 1.82

Figure 2.2. DES vs high directed graph based algorithm, 64 bit password

2.7.4. Linearity from password length

It is easy to understand that with the fixed size of the plaintext, our
algorithm depends linear from the password length. Each step of algorithm
(taking the neighbour of the chosen colour) have fixed complexity, and the
number of such steps depends on number of characters in the password.
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Pass [B] G1 [s] G2 [s] G4 [s]

1 0.38 0.20 0.14

2 0.75 0.39 0.14

4 1.50 0.58 0.28

6 2.24 0.77 0.28

8 2.95 0.92 0.42

10 3.69 1.16 0.42

12 4.46 1.37 0.56

14 5.12 1.52 0.56

16 5.79 1.68 0.68

Figure 2.3. Fixed file size (40 MB), comparison of our 3 algorithms.

Figure (2.3) illustrates this property, and shows the advantage of using
bigger alphabet, but less number of operations. Algorithm ”G4”, using
natural for today’s computers, 32 bit arithmetics (with automatic modulo
operations) behaves over 8 times faster that ”G1” (8 bit arithmetics).

2.8. Statistics related to mixing properties

In our cryptographical scheme different passwords produce different ci-
phertexts with fixed plaintext. From the other hand when we fix the pass-
word, different plaintexts produce different cipertexts. Good cryptograph-
ical systems should ensure this difference to be big in terms of number of
characters changed, looking as ”randomly” as possible. These demands are
known in literature as Madryga requirements. There are more postulates for



2.8. Statistics related to mixing properties 49

a good crypto system formulated by Madryga, but here we will concentrate
on the mentioned two.
RC4 algorithm, as most elder stream ciphers, have the property, that

with fixed password, changing one element of the plaintext leads to change
one corresponding element in ciphertext. Such algorithms are not secure
against the plaintext-ciphertext attacks.
Our basic algorithm, based on paths in graphs from the family

RDE(n,K), behaves similarly to RC4: changing one element of the plain-
text leads to change only few elements in the ciphertext.
In order to correct this property, we can combine the algorithm with

some fast, sparse matrix operations:
1. Desynchronisation of the graph by the automorphism.
Let ā = (a1, a2, . . . , am), (ai ∈ Z2k) be the password and Nai be one step
of algorithm (passing from one vertex to another using ai element of
password). We can denote our encryption algorithm as

Eā = Na1Na2 . . . Nam .

Desynchronisation can be described as:

ANa1Na2 . . . NamA
−1 = ANa1A

−1
ANa2A

−1 . . .ANamA
−1,

where A is some bijection. All interesting from our point properties of
Eā are preserved.

2. Deformation of the graph.
With the above notation for the deformation we use two bijectionsA and
B, changing Eā into AEāB. The property that different passwords lead
to different ciphertexts is preserved, but there can happen the situation,
that for the plaintext vector x̄ the corresponding ciphertext, AEāB(x̄)
coincides with x̄. Anyway the probability of such event is 1/|V |, where
V is the plainspace. It is very close to zero.

File [MB] G1 [s] G2 [s] G4 [s]

4 0.04 0.02 0.01

16.1 0.12 0.10 0.08

38.7 0.32 0.24 0.20

62.3 0.50 0.40 0.30

121.3 0.96 0.76 0.60

174.2 1.39 0.96 0.74

Table 2.2. Time grow from mixing property AnEāA
−1

n for chosen operator An



50 2. Simple graphs with special arcs and Cryptography

We chose the bijection A as sparse affine transformation. Its complexity
is O(n). Our test shows, that using for desynchronisation a properly cho-
sen upper-triangular matrix An gives about 98.5% difference between the
ciphertexts, when changing only 1 element of the plaintext (we use index n,
because size of theA depends on the size of the plaintext). Table (2.2) shows
the extra time spent by all 3 versions of our algorithm on the operation An.
If instead of desynchronisation as above we apply the deformation with

B = I (identity map) and same A, the speed of computation will be twice
better and mixing properties are same.
The second Madryga requirement mentioned above (effect of the change

of one character from the key) can be stated as follows: for short passwords
(1B) the percentage of the change within the cipherstring is about 92%, and
for longer passwords up to 96%.

2.8.1. On the time evaluation for the public rule

Recall, that we combine graph transformation N l with two affine trans-
formation T1 and T2. Alice can use T1N

lT2 for the construction of the
following public map of

y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

Fi(x1, . . . , xn) are polynomials of n variables written as the sums of
monomials of kind xi+1 . . . xi3 , where i1, i2, i3 ∈ 1, 2, . . . , n1 with the co-
efficients from K = Fq. As we mention before the polynomial equations
yi = Fi(x1, x2, . . . , xn), which are made public, have degree 3. Hence the
process of encryption and decryption can be done in polynomial time O(n4)
(in one yi, i = 1, 2 . . . , n there are 2(n3 − 1) additions and multiplications).
But the cryptoanalyst Cezar, having only a formula for y, has very hard
task to solve the system of n equations of n variables of degree 3. It is
solvable in exponential time O(3n

4
) by general algorithm based on Gröbner

basis method. Anyway studies of specific features of our polynomials could
lead to effective cryptoanalysis. This is an open problem for specialists.
We have written a program for generating public key and for encrypting

text using generated public key [128]. The program is written in C++ and
compiled with the Borland bcc 5.5.1 compiler.
We use matrix in which all diagonal elements equal 1, elements in the

first row are non-zero and all other elements are zero as A, identity matrix
as B and null vectors as c and d. In such a case the cost of executing affine
transformations is linear.
The following table presents the time (in milliseconds) of generation

of public key depending on the number of variables (n) and the password
length (p).
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p = 10 p = 20 p = 30 p = 40 p = 50 p = 60

n = 10 15 15 16 32 31 32

n = 20 109 250 391 531 687 843

n = 30 609 1484 2468 3406 4469 5610

n = 40 2219 7391 12828 18219 24484 29625

n = 50 5500 17874 34078 49952 66749 82328

n = 60 12203 42625 87922 138906 192843 242734

n = 70 22734 81453 169250 286188 405500 536641

n = 80 46015 165875 350641 619921 911781 1202375

n = 90 92125 332641 708859 1262938 1894657 2525360

n = 100 159250 587282 1282610 2220610 3505532 4899657

The following table presents the time (in milliseconds) of encryption
process depending on the number of bytes in plaintext (n) and the number
of bytes in a character (w).

w = 1 (Z28) w = 2 (Z216) w = 4 (Z232)

n = 20 16 0 0

n = 40 265 47 15

n = 60 1375 188 15

n = 80 3985 578 47

n = 100 10078 1360 125

2.8.2. Theoretical properties, some other folders

1) The relation of the RDE(n,K) - based algorithm with arithmetical dy-
namical system insure that in case when l ≤ n/2 + 2 and fixed T1, T2

different passwords of length l map the plaintext to distinct ciphertext.
If T1 = T2

−1 and l ≤ n + 3, then cubical encryption map has no fixed
points.

2) Let us consider DE(n,K)-based encryption, where Nα is an operator of
taking the neighbour alongside the edge of color α 6= 0 of directed edge
in DE(n,K). We will prove that if char(K) 6= 2 then the connected
component containing flag ((0), [0]) is defined by additional equations
a1(f) = a2(f) = . . . ar(f). All connected components are isomorphic.

Let CDE(n,K) be the connected component with |P | = |L| = |K|n+1−r

points and lines. Then CDE(n,K) encryption can convert any chosen plain-
text into any chosen ciphertext.

Polarities of D(n,K) and related dynamical systems

Let P and L be disjoint sets, the elements of which we call points and
lines, respectively. A subset I of P × L is called an incidence relation on
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the pair (P,L). The incidence graph Γ of geometry (P,L, I) is defined to
be the bipartite graph with vertex set P ∪ L and edge set {{p, l}|p ∈ P, l ∈
L, (p, l) ∈ L}.
Let π : P ∪ L → P ∪ L be a bijection for which the following hold

(i) P π = L and Lπ = P ,
(ii) for all p ∈ P , l ∈ L (lπ, pπ) ∈ I if and only if (p, l) ∈ I,
(iii) π2 = 1.

We call such π a polarity of the incidence structure (P,L, I). Note
that π induces an order two automorphism of the incidence graph Γ which
interchanges the bipartition sets P and L. We shall use the term ”polarity”
and the notation ”π” for the graph automorphism as well.
We now define the polarity graph Γπ of the structure (P,L, I) with

respect to polarity π. It is the graph with the vertex set V (Γπ) = P and
edge set

E(Γπ) = {{p1, p2}|p1, p2 ∈ P, p1 6= p2, (p1, p2
π) ∈ I}.

Finally, we call point p ∈ P an absolute point of the polarity π provided
(p, pπ) in I.
Let Nπ denote the number of absolute points of π.

Proposition 7. (see, for instance [64])
Let π be be a polarity of the finite incidence structure (P,L, I) and let Γ

and Γπ be the correspondent incidence and polarity graphs.

(a) degΓπ = degΓπ − 1 if p is an absolute point of π, and degΓπ = degΓ
otherwise.

(b) |V (Γπ)| = 1/2|V (Γ)|, |E(Γπ)| = |E(Γ)| −Nπ,
(c) If Γπ contains a (2k + 1)-cycle then Γ contains a (4k + 2) cycle.
(d) If Γπ contains a 2k-cycle then Γ contains two vertex disjoint 2k cycles
C and C ′ such that Cπ = C ′. Consequently, if Γ is 2k-cycle-free then so
is Γπ.

(e) The girth of the two graphs are related by g(Γπ) ≥ 1/2g(Γ).

It is clear that statements (c) , (d) and (e) are valid for an infinite
incidence structure with polarities.
Let us consider the case of the incidence structure with paralleloopic

graph (Γ, ρ) with the polarity π which is the parallelotopic morphism. We
call such π a parallelotopic polarity. In that case we can define the regular
folding graph RΓ = R(Γπ) = {(p.p′)|ρ(p) 6= ρ(p′), (p, p′) ∈ E(Γπ)}.
Let us consider the case when the set B of colours of the absolute points

is a proper subset of the set of all colours C. In that case we can define
an induced subgraph IΓ = IΓπ with the set of vertices {v ∈ Γπ|ρ(v) ∈
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C −B} Directly from the definitions and above proposition we are getting
the following statement.

Lemma 5. Let P,L, I be the incidence structure with the k-regular paral-
lelotopic incidence graph Γ and parallelotopic polarity π : Γ → C. Then
R(Γπ) is k − 1-regular graph of girth g, where g ≥ g(Γπ) ≥ g(Γ).
If the set B of colours for absolute points of π is different from C, then

IΓ is |C −B|-regular graph and g(IΓ)) ≥ g(Γπ) ≥ g(Γ).

Remark 1. Graph IΓ is a parallelotopic graph. Let S be a finite proper
subset of C −B of cardinality s. Then the graph IΓS has valency s and

g(IΓS) ≥ g(IΓ).

Remark 2. Graph RΓ is not a parallelotopic graph because of sets
of colours from the neighbour hoods differs from vertex to vertex. Let S,
|S| = s be a subset of the colour set C of the parallelotopic graph Γ. Then
parallelotopic polarity π induces a parallelotopic polarity π of RΓS. The
graph RΓS shall be a graph of valency s− 1 and g(RΓS) ≥ g(ΓS) ≥ g(Γ).

Proposition 8. The map π given by the close formula

pπ = [p10,−p11, p21, p12,−p′22,−p22, . . . ,−p′ii,−pii, pi+1,i, pi,i+1, . . . ],

lπ = (l01,−l11, l21, l12,−l′22,−l22, . . . ,−l′ii,−lii, li+1,i, li,i+1, · · · )

is a parallelotopic polarity of D(n,K). It preserves blocks of the equivalence
relation τ . It is restriction on V (CD(n,K)) is a parallelotopic polarity of
CD(n,K).

Let L(n,K) be regular folding graph corresponding to the parallelo-
topic polarity π induced on the vertices of the graph C(n,K). In case of
charK = 2 the colours of absolute points of the polarity graph of C(n,K)
corresponding to the polarity π form the set B = {x|x2 = 0}. Thus colours
of the vertices of B(n,K) are elements of K −B.
Directly from the fact g(D(n, Fq)) ≥ 2[(n + 5)/2] , proposition 7 and

lemma 5 we are getting

Proposition 9.

(i) The girth of the graph L(n, Fq) = L(n, q) and B(n, Fq) = B(n, q), q
is even is, at least 2[(n+5)/2]. They are regular graphs of degrees q− 1
and qt with qt and (q − 1)qt−1 vertices, respectively.
(ii) For each q they form a families of graphs of large girth with the
γ = 2/3logq−1(q).
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(iii) Let S be a subset of nonzero elements of Fq, |S| = s then L(n, Fq)
S

and B(n, Fq)
S (q is even) are graphs of the order sqt−1, girth ≥ 2[(n +

5)/2] and degrees s− 1 and s, respectively.

Arithmetical dynamical systems defined by projective limits of L(n,K)
and B(n,K) were considered in [118]. The implementation of related stream
ciphers the reader can find in [54].
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3.1. Incidence systems and groups

Let us recall some standard definitions.
An incidence system over a type set ∆ is a triple (Γ, I, t), where Γ is a

set (whose elements are called objects), I is a symmetric and reflexive binary
relation on Γ (called the incidence relation) and t is a map from Γ into ∆
(called the type function). The rank of the incidence system is defined to be
|∆|. It is convenient to write Γ in place of (Γ, I, t) when doing so does not
lead to confusion. Let Γ and Γ′ be incidence systems defined over the same
type set ∆. A morphism of Γ into Γ′ is a map φ : Γ → Γ′ which preserves
incidence. We say φ is type–preserving if, in addition, t(A) = t(Aφ) for all
A ∈ Γ.
An important example of the above is the so–called group incidence

system Γ(G,Gs)s∈S . Here G is an abstract group and {Gs}s∈S is a family
of distinct subgroups of G. The objects of Γ(G,Gs)s∈S are the cosets of
Gs in G for all possible s ∈ S. Cosets α and β are incident precisely when
α ∩ β 6= ∅. The type function is defined by t(α) = s where α = xGs for
some x ∈ G.
The rank of the incidence system (Γ, I, t) is the cardinality of ∆.
An incidence structure (P,L, I) is an incidence system of rank 2. In this

case the set Γ is P ∪ L , where P and L are two disjoint sets (the set of
points and the set of lines, respectively). As usual, we impose the following
restrictions on the incidence relation I: two points ( lines) are incident if
and only if they coincide.
The graph B((P,L, I)) of the symmetrical incidence relation I referred

to as the incidence graph for (P,L, I). We will not make much distinction
between the incidence structure and the corresponding incidence graph. We
will say that an incidence structure is r1, r2-biregular, if every point is inci-
dent to r1 lines and every line is incident to r2 points.
Let (P,L, I) be an incidence structure, P ′ and L′ subsets of P and L

respectively and I ′ the restriction of the relation I to the set P ∪ L. We
shall refer to the incidence structure (P ′, L′, I ′) as a substructure of (P,L, I).
Obviously, B((P ′, L′, I ′)) is the induced subgraph in (P,L, I).
Let G be a group with proper subgroups G1 and G2 such that

< G1, G2 >= G. Let us consider the incidence structure Γ(G) = Γ(G)G1,G2

with a set of points P = (G : G1) and set of lines L = (G : G2).
The group G is a subgroup of the automorphism group of Γ(G), the

action of G on the set of edges being equivalent to its action on (G : G1∩G2)
by right shifting.
The following elementary statement is well known.
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Lemma 6. The incidence graph for Γ = Γ(G)G1,G2 is connected if and only
if the subgroups G1 and G2 generate G. Every connected component of Γ is
isomorphic to Γ(G′)G1,G2 where G

′ =< G1, G2 >.

We will say that a bipartite parallelotopic graph is a group parallelotopic
graph if it is isomorphic to the incidence graph of an incidence structure
Γ(G)G1,G2 where G is a group with subgroups G1 and G2.
We will consider further the case of a unipotent-like factorization, i.e.

a factorization of a group U into 3 subgroups U1, U2 and U3 such that
U1∩U2 = 1, U1∩U3 = 1, U2∩U3 = 1 , and U3 contains [U1, U2]. Thus, there
are unique decompositions u ∈ U of the kinds u = u1u2u3 and u = u2u1u

′
3

where u1 ∈ U1, u2 ∈ U2, u3, u
′
3 ∈ U3.

Let us consider the incidence structure Γ = Γ(U)U1,U2. Directly from
definitions we obtain:

(1) For every coset U1u there is a canonical representative u2u3, u2 ∈ U2,
u3 ∈ U3. Let us call u2 = π(U1u) the colour of the coset U1u.

(2) For every coset U2u
′ there is a canonical representative u1u

′
3, u1 ∈ U1,

u′3 ∈ U3. Let us call u1 = π(U2u
′) the colour of the coset U2u

′.

Lemma 7. Let U = U1U2U3 be a unipotent-like factorization of the group
U . Then the incidence graph of Γ(U) = Γ(U)U1,U2 is a group parallelotopic
graph with color set U1 ∪ U2 and with parallelotopic colouring π.

Proof. Without loss of generality we can consider only the case of neighbor
U2u

′ of coset U1u. Let u1 be the color of U2u
′ and let u2 be the color of

U1u. Let g be common element of cosets U1u and U2u
′. Then g = b2u1u3 =

b1u2u
′
3 for some b1 ∈ U1 and b2 ∈ U2 and u3, u

′
3 ∈ U . We can rewrite this

equation in the following form u1b2wu3 = b1u2u
′
3, where w = [b2, u1] ∈ U .

From the uniqueness of the decomposition of g into product of elements
from U1, U2 and U3 we obtain bi = ui, i = 1, 2 and wu3 = u′3.
Thus, u3 = [u1, u2]u

′
3 and neighbor has been determined uniquely.

Remark. Graph Γ(U)U1,U2 is a biregular with bidegrees a = |U1| and
b = |U2| and r = |U3|.

The following statement is useful for making parallelotopic quotients of
group parallelotopic graphs.

Lemma 8. Let U = U1U2U3 be a unipotent like factorization of group U
and let F be a normal subgroup of U , which is a proper subgroup in U3. Let
φ be the canonical homomorphism of U onto U/F . Then

φ(U) = φ(U1)φ(U2)φ(U3)
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is a unipotent like factorization of φ(U).

Let Γ′ be a parallelotopic quotient of a group parallelotopic graph Γ.
If Γ′ is also a group parallelotopic graph we call it a group parallelotopic
quotient of Γ.
Reference for rest of section is [68].
Let us recall the definition of free product and some of its basic proper-

ties.
Let A =< a1, · · · , an|R1, . . . , Rd > and B =< b1, · · · , bm|S1, . . . St >

be subgroups with generators ai and bk and generic relations Rj and Sl,
respectively. Free product F = A ∗B of A and B is the subgroup
< a1, · · · , an, b1, · · · bm|R1, · · · , Rd, S1, · · · , St >. We will treat A and B as
a subgroups of F in a usual way.
Call the nonidentity elements of A and B syllables. A syllabic word

is simply a product of the form a1b1a2b2 · · · or b1a1b2a2 · · · with ai ∈ A,
bj ∈ B syllables. The length of a syllabic word w is merely its number of
syllables, and the syllabic length of w is the smallest length of any syllabic
word equivalent to w. We define λ(g) to be the syllabic length of g.

Proposition 10. Let G be a free product of finite nontrivial groups G1 and
G2. Let G3 be the group [G1, G2]. Then G = G1G2G3 is a unipotent-like
factorization of G.

Proof. Consider the case g = g1h1g2h2. Then

g1h1g2h2 = g1h1h2g2[g2, h2] = g1hg2[g2, h2],

where h ∈ G2. This equals g1g2h[h, g2][g2, h2] = gh[h, g2][g2, h2] where
g ∈ G1.
Finally this equals hg[g, h][h, g2 ][g2, h2] which is a word in G1G2G3. For

longer words this trick can be repeated inductively.
Let us prove that the decomposition of g above is unique. Suppose that

g = v1v2v3 and g = u1u2u3 are two decompositions of g. Then v1v2v3 =
u1u2u3 and (u−1

1 v1)v2(v3u3)
−1 = u2. It is clear that λ(u2) ≤ 1. If u3 6= v3

the syllabic length of the left-hand-side of the last relation is ≥ 2 because
the nontrivial elements of G3 have syllabic length at least 4 (since elements
[a, b] = aba−1b−1 are free generators of [A,B]). Thus v3 = u3 and we
immediately have u2 = v2 and v1 = u1.

A filtration of group G is an infinite decreasing sequence Fn, n = 1, . . .
of distinct normal subgroups of G such that

(i) F1 = G,
(ii) the commutator [Fn, Fm] < Fn+m
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An important fact for us is that the free product G = A∗B, with A and
B finite groups, has infinitely many filtrations Fn such that |G : Fn| ≤ ∞
for all n.
Lemma 6 provides a tool for making group parallelotopic quotients

Γ(U/F )U1,U2. Namely, we have

Theorem 6. Let Gi, i = 1, 2 be a finite group, G = G1 ∗ G2 and Fi a
filtration with |G : Fi| ≤ ∞ for all i. Then the graphs Γi = Γ(G/Fi)G1,G2

form an infinite sequence of parallelotopic graphs of increasing order and un-
bounded girth. Moreover each mapping Γi → Γi+1 is a group parallelotopic
morphism.

Proof. The group G is the projective limit of factor groups G/Fi (see [87])
and the graph Γ(G)G1,G2 is the projective limit of Γ(G/Fi)G1,G2 . The graph
Γ(G)G1,G2 is a tree because G is a free product of G1 and G2 and its girth
is infinite. Thus the girth of Γ(G/Fi) is unbounded.

Proposition 11. Let G be a simple group of Lie type of rank 2 over the
finite field of characteristic p , U a Sylow p-subgroup of G , and U1 and U2

root subgroups corresponding to positive simple roots.
Then there exist elementary abelian subgroups U1, U2 of U such that

Γ(U)U1,U2 is a group parallelotopic graph. Moreover, the girth of Γ(U)U1,U2

is at least 2m, where m = 3, 4, 6, or 8 depending on the Weyl group Dm of
G, G ∈ {A2(q), B2(q), G2(q),

2 A3(q),
2 A4(q),

3 D4(q),
2 F4(q)}.

Proof. Let U1 and U2 be root subgroups of U (see [22]) corresponding to
fundamental roots. Then U =< U1, U2 > and U1, U2 are elementary abelian
subgroups with U1 ∩ U2 = e. Let us consider the free product H = U1 ∗ U2

and the uniquely defined surjective homomorhism map φ : H → U such
that φ(v) = v for v ∈ Ui, i = 1, 2. It is clear, that Kerφ ∩ Ui = e. Thus
H/Kerφ = U and we have unipotent like factorizations U1U2[U1, U2] for
both U and H. (Note that [U1, U2] has different meanings inside U and H.
If we set U3 = [U1, U2] (a subgroup of U) and U

′
3 = [U1, U2] (a subgroup of

H), then U3 = U3
′/F , where F = Kerφ. Thus Γ(U)U1,U2 is a parallelotopic

graph.
Let r1 and r2 be fundamental roots corresponding to U1 and U2, respec-

tively. Then the root subgroups U−r1 , U−r2 generate U
− =< U−r1U−r2 >

and U−r1 , U−r2 and U
− are isomorphic to U1 , U2 and U , respectively. Let

P1 and P2 are maximal parabolic subgroups containing U−, i.e, maximal
proper subgroups of G containing the normalizer of U− in G. Then we
have U ∩ G = U and U ∩ Pi = Ui, i = 1, 2. Thus Γ(U)U1,U2 is an induced
subgraph of Γ(G)P1,P2 which is the incidence graph of a generalized m-gon
corresponding to G (see [20]). The girth of the generalized m- gon is 2m.
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The girth of the induced subgraph is at least the girth of the initial graph.
Thus the girth of Γ(U)U1,U2 is at least 2m.

Remark. The graph Γ(U)U1,U2 is called an affine m-gon. Generalized
m-gons and their use in Cryptography will be considered in the next unit
independently.

Let us consider the characterizations of Γ(U)U1,U2 in terms of linear
algebra.
Let G be a finite simple group of Lie type of rank 2 defined over a field

of characteristic p, and U a Sylow p-subgroup of G. Then the normalizer B
of U can be written as a semidirect product UλT , where T is the maximal
torus. There are exactly two maximal parabolic subgroups P1 and P2 of
G, i.e. maximal proper subgroups containing the group B. The geometry
Γ(G) of G is the tactical configuration with the set of points P = (G : P1)
and the set of lines L = (G : P2), a point p and line l are incident pIl if the
set-theoretical intersection of the cosets a and b is non empty.
The Weyl group W of G is the dihedral group Dm, i.e. Coxeter group

with the generators r1 and r2 and generic relations (r1)
2 = e, (r2)

2 = e and
(r1r2)

m = e, where m can be 3, 4, 6, or 8 depending on W . Thus we have
factorizations G = BWB, P = B < si > B, i = 1, 2. The geometry Γ(W )
of W is the tactical configuration with the set of points (W :< r1 >) and
(W :< r2 >), the point p is incident to the line l if and only if the intersection
of cosets p and l is not empty. It is clear that Γ(W ) can be identified with
the set of vertices (points) and edges (lines) of ordinary m-gon on the plane
with natural incidences (as drawn).
The set of invariant points of the transformation group (T,Γ(G)) with

the restriction of the incidence relation to it is the Weyl geometry Γ(W ).
Thus we have the standard embedding of Γ(W ) into Γ(G).
Let us consider orbits of B acting on Γ(G) (so called Schubert cells).

Every Schubert cell S contains a unique element α of Γ(W ), so we can use
α as natural index of S = Sα. We write Cox(a) = α if the element a of
Γ(G) is a representative of the Schubert cell Sα and say that Cox(a) is a
Coxeter trace of a. Actually, the map a → Cox(a) is a homomorphism of
tactical configurations Γ(G) onto Γ(W ), so called retraction map.
For each α in Γ(W ) there is a unique subgroup U(α) of U which acts

regularly on Sα. Thus we have a natural matching between elements of
U(α) and Sα. Thus any element a of Γ(G) can be identified with the pair
(α, x), where α = Cox(a) and x is the element of U(α) corresponding to
a ∈ Sα. We will say that (α, x) are the group coordinates of a and write
simply a = (α, x).



3.1. Incidence systems and groups 61

We follow the interpretation of Γ(G) described in [105]. It is shown there
that there exists a skew-symmetric linear algebra (L, ∗) over the finite field
K and a bijective map log : U → L such that logU(α) is a subspace L(α)
of the vector space L and such that elements a = (α, x) and b = (β, y) are
incident in Γ(G) if and only if α is incident with β as elements of Γ(W )
and dα(log x)− dβ(log y) = log x ∗ log y, where dα and dβ are certain linear
operators on L, depending on α and β only. Neighbours of an element (α, x0)
of the kind (β, y) can be defined by system of linear equations. There is a
convenient canonical basis in which all L(α) are spanned by basis elements
and neighbours of an element (α, x0) of the kind (β, y) are given by a system
of linear equations with its matrix in row-echelon form.
If G is defined over GF (q) of sufficiently large characteristic, then (L, ∗)

can be identified with the upper root space L+ of the Borel subalgebra
H + L+ in the Lie algebra corresponding to G where H is the Cartan
subalgebra. Multiplication in this Lie algebra is called the Lie product and
denoted by [,].
Elements dα can be treated as vectors in H acting on L+. Thus an

element a = (α, x) can be identified with the vector y = dα + log x of the
Borel subalgebra. We will refer to y as the algebraic coordinates of a. Such
an embedding of a Lie geometry into the Borel subalgebra is considered in
[108] ( see also [105] in case of a Lie group normal type, and in [104] for
twisted groups). The relation exp(log x) = x explains our choice of notation
for the map from U onto L, the word logarithm is a reasonable term for this
map.
Now, let us consider the structure of the subgroups U and U(α) and

operators dα in more details.
We say that G = G1G2 · · ·Gt , t ≥ 2 is a standard factorization of group

G if each element g ∈ G can be presented uniquely as g = g1g2 · · · gt , where
gi ∈ Gi, i = 1, . . . , t.
Let us consider R = R1 ∪ R2, Ri = {riw|w ∈ W}, i = 1, 2 , i.e. R is

the set of elements of W which are conjugate to one of the two Coxeter
generators r1, r2. If |W | 6= 8 there is a natural one to one correspondence
between R and the set Root+ of all positive roots in R2 corresponding to
W , because we may identify each element of R with the reflection map
relative to the line orthogonal to a certain root in Root+. Hence we identify
R with Root+. In what follows, for each element r ∈ R we may consider
a root subgroup Ur, which is isomorphic to the additive subgroup of some
finite vector space V . Thus Ur is an elementary abelian group. We have
Ur = {xr(t)|t ∈ V }, where xr(t) is the so called root element, see [22].
Note that if G is a Lie group of normal type defined over the field Fq,

then V is a one-dimensional vector space over Fq. In the case of a twisted
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group the dimension of V can be larger; in fact one may have that Ur and
Ur′ have different order for r ∈ R1 and r

′ ∈ R2.
There are standard factorizations U = Ur1Ur2 . . . Urm and

U = Ur2Ur1 . . . Urm , where r3, . . . , rm is an ordering of the positive roots
other than r1, r2.
For a group of normal type each element u of U can be written uniquely

as u = xr1(t1)xr2(t2) . . . xrm(tm) and log(u) = (t1, t2, . . . , tm) in the basis
er1 , . . . , erm of L

+ which is the restriction of the Chevalley basis of the Lie
algebra. This is the canonical basis mentioned earlier. Set Lri = log(Uri).
Then one has L+ = Lr1 +Lr2 + · · ·+Lrm . This is called the root decompo-
sition of L+.
There are standard factorizations of group U(α) into subgroups Uri ,

ri ∈ Rα, where Rα is a certain subset of R. More precisely, we may identify
the coset α =< ri > w, w ∈ W , i = 1, 2 with the unique word a1a2 . . . at in
α of shortest length in the alphabet {r1, r2} with the initial letter a1 6= ri.
Then Rα = {at, (at)at−1 , . . . , (at)

at−1at−2...a1}. Obviously Lα is the direct
sum of Lr, r ∈ Rα.
Finally, we may consider the following interpretation of Γ(W ) in the

case of sufficiently large characteristic. Let h1, h2 be the basis of the Cartan
subalgebra H which is the restriction of the Chevalley basis on it. L+ is
an invariant subspace for H under the Lie product and we may identify the
linear operator dα(x), α =< ri > w with [hi

w, x] and the element α with
hα = hi

w. Thus hi
w + log(u) is an element of the Borel subalgebra corre-

sponding to the object from Γ(G) with group coordinates (α, u). Elements
a = (α, u) and b = (β, v) are incident if αIβ in the Weyl geometry and
[hα + log u, hβ + log v] = 0.
Let us consider the action of U on Γ(G) = P ∪ L. There are m orbits

(Schubert cells) of the transformation group (U,P ) ((U,L), respectively).
Let us consider the largest Schubert cell on each P = (G : P1) and L = (G :
P2). It contains the unique coset α(i) from Γ(W ) containing an element
Dm of maximal length. For such an α(i) we have hα(i) = −hi and Rα(i) =
R − {ri}, i = 1, 2. Let us consider the induced subgraph A(Γ(G)) of Γ(G)
on the Schubert cells containing α(1) and α(2). We may identify elements
with their algebraic coordinates, which are actually vectors of the Borel
subalgebra, and get the following description of A(Γ(G)):

P = (−h1)
∗ + x, x ∈

∑

r∈R−{r1}

Lr,

L = (−h2)
∗ + y, y ∈

∑

r∈R−{r2}

Lr

−h1
∗ + xI−h2

∗ + y ⇐⇒ [−h1
∗ + x,−h2

∗ + y] = 0.
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For a group of normal type we may write the incidence condition defined
above by linear equations over the ground field K. To define a group G of
twisted type we need to take a certain field automorphism v. We may still
use the equations above to define the incidence of Γ(G) (see [104]). They
are not linear over K but they are linear over a certain subfield K ′ ⊂ K. In
fact K ′ could be the invariant subfield of the field automorphism v if m 6= 8,
and K ′ = GF (2) for m = 8. Thus we proved the following statement.

Proposition 12. Let G be a simple group of Lie type of rank 2, defined over
a field K, U a unipotent subgroup of G, and U1 and U2 root subgroups corre-
sponding to positive simple roots. Then the incidence graph Γ = Γ(U)U1,U2

is a linguistic graph of affine type over some subfield K ′ of K.

Remark. Examples 1-5 of optimal linguistic graphs of affine type are
graphs Γ(U)U1,U2. They are affine m-gons corresponding to groups the A2,
B2, G2 and

2A3 , respectively. Similarly we can write the linear equations,
which give us 3D4,

2A4 and
2F4. The case of F4 is more sophisticated

because the number of equations depends on the size of the ground field
GF (2k), where k is odd.

Lemma 6 is a tool for making group parallelotopic quotients Γ(G/F )U1,U2.
It can be generalized as follows.
Let G be a group with subgroups, H, G1, G2, such that H ∩G1 =< e >

and H ∩ G2 =< e >. Let Γ(G ւ H)G1,G2 be the incidence graph of
the incidence structure, whose points are double cosets G1gH and lines
are double cosets G2gH and where a point and a line are incident iff their
intersection, as subsets ofG, is not empty. Let µH : Γ(G)G1,G2 → Γ(G ւ H)
be the map such that µH(Gig) = GigH .
We say that G = G1G2 . . . Gt is a strong factorization of the group G if

the decomposition g = g1g2 . . . gn, gi ∈ Gi is uniquely defined for any g ∈ G.

Lemma 9 (107). . Let G = U1U2U3 be a unipotent-like factorization of the
group G and H a proper subgroup of U3. Then

(i) Γ(G ւ H)U1,U2
is a group parallelotopic structure and µH is a paral-

lelotopic homomorphism of Γ(G)U1,U2 onto Γ(G ւ H)U1,U2.
(ii) If U3 = KH is a strong factorization of U3, then µH is a triangular
homomorphism.

Remark. The graphs CD(k, q) are graphs of the triangular folder
Γ(G ւ Hi)G1,G2, G = G1 ∗ G2, where G1 and G2 are two copies of the
elementary abelian group GF (q)+, q = pn and |Hi : Hi+1| = q [107]. In
particular, CD(2k, q) are isomorphic to Γ(G/H)G1,G2

, where Hi is a normal
subgroup of G.
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We will consider also the more general case of a parabolic-like factoriza-
tion, i.e. a factorization of group G into 4 subgroups U1, U2, U3 and U4

such that
a) Ui ∩ Uj = 1 for i 6= j
b) U2 and U3 are finite
c) U4 contains [U1, U2] and
d) there are unique decompositions g ∈ G of the kind
where ui ∈ Ui, i = 1, 2, 3, 4.
Let us consider the incidence structure Γ = Γ(G)U1,3,U2,3 , where

U1,3 =< U1, U3 >,U2,3 =< U2, U3 >

Directly from the definitions we find that
(1) For every point (p) = gU1,3 there is a canonical representative g

′ = u2u,
u2 ∈ U2, u ∈ U4 such that U1,3g = U1,3g

′. Let us call u2 = π((p)) the
”labelling of the point”.

(2) For every line [l] = U2g there is a canonical representative g
′ = u1u,

u1 ∈ U1, u ∈ U4 such that U2,3g = U2,3g
′. Let us call u1 = π([l]) the

”labelling of the line”.

Lemma 10. Let G = U3U1U2U4 be the parabolic-like factorization of group
G. Then the incidence structure Γ(G) = Γ(G)U1,3,U2,3 is a group parallelo-
topic structure over (U1, U2) with the labelling π.

Proof. Without loos of generality we can consider only the case of a neigh-
bour [l] of the point (p). Let u1 be the first coordinate of [l] = U2,3u1x and
(p) = U1,3u2u4, u2 ∈ U2, u ∈ U4. Let g be a common element of the cosets
[l] and (p). Then g = b2u1x = b1u2u for some b1 ∈ U1 and b2 ∈ U2. We
can rewrite this equation in the following form: u1b2(wx) = b1u2u, where
w = [b2, u1] ∈ U4. From the uniqueness of the decomposition of g into a
product of elements from U1, U2 and U4 we obtain

bi = ui, i = 1, 2 and wx = u.
Thus, x = [u1, u2]u and the neighbour has been determined uniquely.

The proof of the following lemma is straightforward.

Lemma 11. Let G = U3U1U2U4 be a parabolic-like factorization of group
G and H be a proper subgroup of U4. Then
(i) Γ(G ւ H)U1,3U2,3

is a group parallelotopic structure and µH is a par-

allelotopic homomorphism of Γ(G)U1,3,U2,3 onto Γ(G ւ H)U1,3,U2,3 .
(ii) If U4 = KH is a factorization such that the decomposition g = kh,
k ∈ K, h ∈ H is uniquely defined, then µH is a triangular homomor-
phism.
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(iii) If H is normal subgroup of G and φ is a canonical homomorphism
of G onto G/H, then µH is induced by φ and φ(U3)φ(U1)φ(U2)φ(U4) is
a parabolic-like factorization of G/H.

Let U be a unipotent subgroup of a simple group G of Lie type. Consider
two Schubert cells Rα and Rβ, such that αIβ in the Weyl geometry. Let
Uα and Uβ be the stabilizers of elements α and β in U , and U3 = Uα ∩ Uβ .
Then there are a standard factorizations Uα = U3U1, Uβ = U3U2 and a
parabolic-like factorization U = U3U1U2U4. It follows from interpreting of
the geometry γ(G) as a blow up of the Weyl geometry that the parallelotopic
graph Γ(U)Uα,Uβ

is a linguistic graph of affine type over some field K ′. In
particular, we have the following generalization of Proposition 9.

Proposition 13. Let G be a simple group of Lie type, defined over field K,
U a unipotent subgroup of G, and U1, . . . , Un root subgroups corresponding
to simple roots. Let J and I be subsets of N = {1, 2, . . . , n} with I ∪J = N .
Then
(i) There exist standard factorizations

UI = U(I, J)U(I),

UJ = U(I, J)U(J),

where U(I, J) = UI ∩ UJ , and the factorization

U = U(I, J)UIUJU
′

is a parabolic-like factorization and the
(ii) the incidence graph Γ = Γ(U)UI ,UJ

is a linguistic graph of affine type
over some subfield K ′ of K.

Remark 1. Let U ′′ be a subgroup of U ′ in the last statement.
Then Γ′ = Γ(U//U ′′)UI ,UJ

is a parallelotopic quotient of Γ.
If U ′ = U ′′U1 is a strong factorization for U ′. Then Γ′ is a triangular

quotient of Γ.

Remark 2. Let L be the Lie algebra over the K corresponding to G,
L′ a subalgebra of L over the subfield K ′ and U ′′ = {exp(adx)|x ∈ K ′} a
subgroup of U ′. Then Γ(U//U”)UI ,UJ

is a linguistic graph of affine type
over K ′.

We will consider below examples of folders of graphs of unbounded girth
connected with amalgamated products of finite groups. Let us recall the
definition of this operation and some of its basic properties.
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Definition [68] Let

G = < a1, . . . , an, b1, . . . , bm;R(aν), . . . , R(bµ), . . . , S(bν), . . . ,

U1(aν) = V1(bµ), . . . , Ul(aν) = Vl(bµ) > .

Let A′ be the subgroup of G generated by a1, . . . , an,
B′ the subgroup of G generated by b1, . . . , bm,
H ′ the subgroup of A′ generated by elements U1(aν , . . . , Ul(aµ), and
K ′ the subgroup of B′ generated by V1(bµ), . . . , Vl(bµ)
We may identify the isomorphic subgroups H ′ and K ′. We then say that

G is the free product of A′ and B′ with the amalgamated subgroup H ′.

Remark. In the definitions above upper case letters with primes and
G denote groups, other capital letters denote words or relations, and lower
case denote generators.

Finally we formulate some straightforward generalizations of proposition
9 and 10.

Proposition 14. Let G be a free product of finite groups A′ and B′ with
amalgamation subgroup H ′ such that A′ = H ′A” and B′ = H ′B” are stan-
dard group factorizations. Then for some subgroup K the decomposition
G = H ′A”B”K ′ is a parabolic-like factorization of G.

Theorem 7. Under the assumptions of the proposition above let us as-
sume that Di, Di > Di+1 is a family of subgroups of K

′ of the finite index
containing almost all members of some filtration of G. Then the graphs
Γi = Γ(G//Di)A′,B′ of different order form an infinite folder of parallelo-
topic graphs of unbounded girth.
If Di = Di+1Di

′ is a standard factorization of Di, then Γi is a triangu-
lar folder. Γ(G)G1,G2 is the projective limit of Γi defined by the canonical
parallelotopic morphisms Γi → Γi+1.

3.2. On graph theoretical absolutely secure encryption

Let us refer to a pair (Γ, {ni|i ∈ J}), where J is the set of possible length
for an encryption arc in the graph Γ, as a J-graphic scheme. Let us assume
that the plaintext of bipartite graph will be one of partition sets. If graph is
not a bipartite we will Is there a graph of girth g such that some J-graphic
scheme defines the absolutely secure algorithm?
Examples of such graphs can give us idea, what objects are good tools

for the encryption in practical situation, when size of the key is essentially
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smaller than size of the plaintext. Besides absolutely secure algorithms can
be used as blocks in real life encryption algorithms,
Let us consider a J-graphic scheme of the graph Γ og girth g where

max{j ∈ J} ≤ [g/2].
If Γ be an absolutely secure scheme then the ratio pkey(i)/pmes(i) of prob-

abilities pkey(i) and pmes(i) to guess the encoding sequence and to guess the
message (plaintext) in the scheme (Γ, t), respectively, equals to 1, because
we use a finite probabilistic space.
We will introduce below absolute secure algorithms with a certain resis-

tance to an attack of type (ii), used walks on bipartite graphs which do not
satisfy to the parallelotopic property. To mark the walks on these graphs
we shall use the coloring of vertices in similar way with the parallelotopic
case together with the special use of symbol ∞.
Lemma 12. If a biregular incidence structure with bidegrees r+1 and s+1
and parameters p, l has girth g ≥ 2k+2, then the following inequalities hold

(1) If k = 2t+ 1 then

1 + r + rs+ r2s+ r2s2 + · · ·+ rt+1st ≤ p (3.1)

1 + s+ sr + s2r + s2r2 + · · ·+ st+1rt ≤ l (3.2)

(2) If k = 2t then

1 + r + rs+ r2s+ r2s2 + · · ·+ rtst ≤ p (3.3)

1 + s+ sr + s2r + r2s2 + · · ·+ strt ≤ l (3.4)

Proof. Let us consider chosen point P . The pass of length h ≤ k between
two chosen vertices is unique. Thus counting of vertices at distance h can
be done by branching process.
So we have l1 = r + 1 lines at distance 1 from P , p1 = (r + 1)s is the

number of points at distance 2 from P . . . , l3 = (r + 1)rs is the number of
points at distance 3 from P . Let k = 2t+ 1. Then

l2h+1 = (r + 1)rhsh, p2h+2 = (r + 1)rhsh+1, where h = 0, 1, . . . , t.
Obviously l1 + l2 + · · · + l2t+1 ≤ l and this inequality is equivalent to

(3.1).
If we change the points and lines in the computation above, we will get

(3.2) by branching process starting from chosen line L.
In case of k = 2t inequalities

p0 + p2 + · · ·+ p2t ≤ p

l0 + l2 + · · ·+ l2t ≤ l

are equivalent to (3.3) and (3.4).
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If t + 1 = s + 1 = k then the order of the graph is v = 2p = 2l
inequalities as above are equivalent to well known the Tutte’s inequality for
regular graphs.

v ≥ 2(1 + (k − 1) + . . . (k − 1)(g−2)/2 (3.5)

Let us refer as extaspecial to incidence structures for which both inequalties
of the lemma above turn out to be equalities. We will use term extraspecial
for graphs of extraspecial structures and regular graphs (not necessarily
bipartite) of order on Tutte’s bound.

Proposition 15. Let Γ be an extraspecial structure of girth g = 2k. Then
graph encryption scheme (Γ, J), J = {0, . . . , k−1}, defines absolutely secure
algorithm.

Proof. The plainspace here is P . The cipherspace is P or L depending on the
value kmod2 the type of element (point or line). Thus for the decryption
adversary has to try all passes of the length from {0, 1, . . . , k − 1}. The
number of such passes is same with V (Γ) . More than that application of
different passes produce different ciphertexts and all possible ciphertexts
can be obtained by application all passes to the certain plaintext. Thus
pmes = Pkey = 1/|P |.

Remark. If Γ is an extraspecial structure with hidden type of elements
( point or line), then we may consider set V (Γ) as the plainspace and take
S = {0, 1, . . . , k− 1}. It gives us an example of absolutely secure algorithm
of encryption. Below we consider some representations of extraspecial con-
figurations with hidden type function.

It is important that the totality of extraspecial graps is nonempty. Gen-
eralized m-gons defined by J. Tits in 1959 (see [96], [97]) as a tactical con-
figurations of bidegrees s + 1 and t + 1 of girth 2m and diameter m. The
pair (s, t) is known as order of generalized m-gon. Extraspecial graphs of
odd girth are known as Moore graphs [17].
From the definition one can deduce (see, for instance, [17]) that in case of

generalized m-gon parameters p and l equal to lefthandsides of inequalities
(3.1)-(3.4). Thus, generalized m-gons are extraspecial tactical configura-
tions.
The following statement is well known (see [17])

Theorem 8. A finite generalized n-gon of order (s, t) has n ∈ {3, 4, 6, 8, 12}
unless s = t = 1. If s > 1 and t > 1, then

(1) n 6= 12;
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(2) if n = 4, then s ≤ t2, t ≤ s2;
(3) if n = 6, then st is a square and s ≤ t3, t ≤ s3;
(4) if n = 8, then 2st is a square and s ≤ t2, t ≤ s2;

Apart of the inequalities, this is the original Feit-Higman theorem.
The known examples of generalized n-gons of of bidegrees ≥ 3 up to

parameters are rank 2 incidence graphs of geometries of finite simple groups
of Lie type. The regular incidence graphs are m=3 (group A2(q) ), m = 4
(group B2(q) or C2(q) ), m = 6 ( group G2(q)), in all cases s = t = q, where
q is prime power.
The biregular but not regular generalized n-gons have parameters s = qα

and t = qβ, where q is some prime power. The list is below.
n = 4: s = q, t = q2 and q is arbitrary prime power or s = q2, t = q3 and q
is arbitrary prime power;

n = 6: s = q2, t = q3 and q = 32k+1, k > 1;
n = 8: s = q, t = q2 and q = 22k+1.
It means that generalizedm−gons related to simple Lie groupsG(GF (q))

with chosen Dynkin diagramm over the finite field GF (q), q = pn, n ≥ 1, p
is prime, produce an infinite family of one-time pads. They have a certain
resistance to attacks of type (ii). The best resistance given by the constant
of complexity would be in the case of 2F4(q), q = 22k+1 - problem of finding
the pass between 2 vertices of general position in generalized octagon is
known hard problem of Algebraic Combinatorics.
The set of points (lines, respectively) of generalized m-gone can be con-

sidered as a disjoint union of vector spaces over the GF (q), . It is convenient
to treat elements of GF (q) as tuples over the fixed alphabet GF (p), so we
may encrypt of ”potentially infinite” text over GF (p). We may consider
say a real-life encryption schemes with flexible keys if we restrict our passes
to the set of passes for the m-gone related to G(GF (t)) where p ≤ t ≤ q is
chosen power of p. We may vary the resistance f(n) of such a scheme to
attacks of type (i) (known ciphertext), it can be as close to one-time pad as
we want, we may chose increasing f(n), but the resistance to attack of type
(ii) is bounded by some constant.
Thus we need families of increasing girth to construct graph theoretical

schemes of encryption for the case of increasing resistance to attacks of type
(ii).
Let us consider in details an example of the implementation of the

encryption process for the generalized m-gons related to a simple group
G = G(q) defined over the finite field GF (q) of charGF (q) = p.
Let U be the Sylow subgroup of G, i.e. so called unipotent subgroup

of the standard Borel subgroup for G. This group can be factorized as
U = U1U2U

′ = U2U1U
′, where U1, U2 are so called root subgroups of U
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of order s = q and t = qh, respectively, s + 1 and p + 1 are bidegrees
of our bipartite graph. The orbits of (U, P), (U, L) are in one-to one
corespondents with monomial terms in the expansion (1) for |P |, such that
size of the orbit coincides with the numerical value of related monomial term
sktj. The action on each orbit of (U,P ) can be identified with the regular
representation of subgroup U1U

′′, U ′′ < U ′ of group U . Similarly each orbit
of (U,L) can be identified with the subgroup U2U

′′, where U ′′ depends on
the chosen orbit. Thus each vertex of generalized m-gon can be identified
with element gg′′, g ∈ Ui, i = 1, 2, g′′ ∈ U ′′. Let us consider the labbelling
c(gg′) = g , which is the ”color” of the element, our spectra of colors is the
disjoint union U1 ∪ U2.
Let v be a point from the orbit for the term sjti. It has exactly t-neighbors

from the orbit (U,L) which is related to term sj−1tj+1. There is exactly
one neighbor of chosen color there.

Remark. Besides generalized polygons related to simple groups of Lie
type, which we consider above, there are important ”nonclassical examples”
of projective planes, non classical generalized quadrangles and hexagons (
[17], [20]) and further references). In case of known examples , we can
consider a similar interpretation of vertices and arcs: choose the edge e =
{p, l} of the graph and change the orbit of U on totality of points (lines) at
given distance from e.

3.3. Correlation with expansion properties

Our applications of the Graph theory to Cryptography based on the
use of graphs of high girth. Other cryptographic application use expansion
properties of graphs, which is also important for parallel computations and
some other area of Computer Science (see [66] and further references). One
of the application expanding graphs to Image Processind the reader can find
in [93].
In fact, there is an interesting correlation between these two properties:

(1) All infinite families of k-regular graphs of given degree t, which have
been considered above, are infinite families of expanders with the second
largest eigenvalue bounded by constant 2

√
t.

(2) All infinite families of graphs of unbounded degree k and bounded girth,
which have been considered above are Ramanujan graphs, i.e. graphs
with the second largest eigenvalue bounded by function 2

√
t− 1.

Let us consider these facts in more details.
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Let A be a set of vertices of a graph X. We define ∂A to be the set of
all elements b ∈ X −A such that b is adjacent to some a ∈ A.
We say that t-regular graph with n vertices has an expansion constant

c if, for each set A ⊂ X with |A| ≤ n/2, |∂A| ≥ c|A|.
One says that the infinite family of graph Xi is a family of expanders

constant c, if there exists a constant c such that every Xi has the expansion
constant c.
An explicit construction of infinite families of t-regular expanders (t-fixed)

turns out to be difficult.
Gregory Margulis ([69], [70], [71]) constructed the first family of ex-

panders. He use representation theory of semisimple groups.
It can be shown that if λ1(X) is the second largest eigenvalue of the

adjacency matrix of the graph X, then c ≥ (t − λ1)/2t. Thus, if λ1 is
small, the expansion constant is large. A well-known result of Alon and
Bopanna says that, if Xn is an infinite family of t-regular graphs (t fixed),
then limλ1(Xn) ≥ 2

√
t− 1.

This statement was the motivation of Ramanujan graphs as special ob-
jects among t-regular graphs. A finite t-regular graph Y is called Ramanu-
jan, if for every eigenvalue λ of Y , either |λ| = t or |λ| ≤ 2

√
t− 1. So,

Ramanujan graphs are, in some sense, best expanders. There is an interest
to families of Ramanujan graph of unbounded degree too.
Lubotzky, Phillips and Sarnak ([66]) proved that graphs defined by Mar-

gulis are Ramanujan graphs of degree p+1 for all primes p. M. Morgenstern
proved that, for each prime degree q, there exists a family of Ramanujan
graphs of the degree q − 1.
Unipotent-like factorizations give us other source of infinite families of

expanders. The following 2 statements have been formulated in [110].

Theorem 9. Let G be a finite group, let G1 and G2 be isomorphic sub-
groups of G such that G =< G1, G2 >, G = G1G2G

′ be a unipotent-like
factorization, and set T = |G1|. Let Γ = Γ(G)G1,G2 has no cycles of length
4. Then the second largest eigenvalue of Γ is bounded by 2

√
t.

Theorem 10. Let G1, G2 are two copies of a finite group G of order |t|.
Then the free product F = G1∗G2 contains infinitely many normal subgroups
H of finite index, such that graphs Γ(F/H)G1,G2 form an infinite family of
expanders with embedded spectra for which the second largest eigenvalue is
bounded by 2

√
t.

As it has been mentioned before in the remark after Lemma 8 graphs
CD(2k, q) coincide with Γ(G/H)G1,G2

, where G1 ∗G2 for G1 = G2 = Fq
+.

So we may apply the theorem 11.2. Spectra of CD(l, k) is a subset of
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spectra CD(l+1, q), because they are consecutive members of a folder and
the following statement is true.

Theorem 11. The second largest eigenvalue of CD(k, q) is bounded by 2
√
q.

Theorem 12. Let G be a Chevalley group of rank 2 over the finite field
GF (q), q > 2 of characteristic p, U a Sylow p-subgroup of G and U1 and
U2 root subgroups corresponding to simple roots. Then affine generalized
polygon Γ = Γ(U)U1,U2 is a q-regular Ramanujan graph.

Proof. The geometry Γ(G) is a reular generalized m-gon (m ∈ {3, 4, 6})
which is a Ramanujan graph. The second largest eigenvalue of it is a =
2
√
qcos(2π/m) (see [17]). Affine generalized polygon is a q-regular induced

subgraph of Γ(G). Thus its eigenvalues are interlacing with eigenvalues of
Γ(G), so the second largest eigenvalue of Γ is bounded by a. Finally, if
q > 2, then a ≤ 2

√
q − 1.

Lemma 13. Let Γ be a k-regular parallelotopic graph with the second largest
eigenvalue λ and BΓ be an induced subgraph of Γ which contains all vertices
which colors belong to a subset B, t = |B| > λ in the set of colors C. Then
BΓ is a t-regular graph with the second largest eigenvalue bounded by λ.

Proof. We just mention that BΓ is a regular induced subgraph of Γ.

The lemma above can be useful for the construction of graphs of given
degree satisfying additional restrictions on the expansion property and the
girth. Let us consider the following example.

Theorem 13. For each positive integer n > 3 there is n-regular Ramanujan
graph of girth > 8.

Proof. Let us consider the sequence 2i + 1, i > 1. For given number n we
can find an integer i such that 2i + 1 < n ≤ 2i+1 + 1 = q. If n = q then
generalized quadrangle GQ(q) over GF (q) satisfies to requested properties.
If not, we can consider BΓ ( or its connected component), where Γ is affine
generalized quadrangle and |B| = n. The second largest eigenvalue of BΓ is
bounded by 2

√
2i+1 × (

√
2/2), which is ≤ 2

√
n− 1, because of n > 2i + 1.

Remark. If q is ”sufficiently large” then affine generalized quadrangle
has a diameter 5 ([17]). Thus for such q we can chose graph BΓ of diameter
5 in the construction above.

We used the expansion properties of graphs as above to organize encryp-
tion process based on methods of parallel computations.
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3.4. On small world semiplanes with generalised Schubert

cells

3.4.1. On the small world graphs without small cycles

The well known ”real -life examples” of small world graphs, including
the graph of binary relation: ”two persons on the earth know each other”
contains cliques, so they have cycles of order 3 and 4. Some problems of
Computer Science require explicit construction of regular algebraic graphs
with small diameter but without small cycles. The well known examples
here are generalised polygons, which are small world algebraic graphs i.e.
graphs with the diameter d ≤ c logk−1(v), where v is order, k is the degree
and c is the independent constant, semiplanes (regular bipartite graphs
without cycles of order 4); graphs that can be homomorphically mapped
onto the ordinary polygons. The problem of the existence of regular graphs
satisfying these conditions with the degree ≥ k and the diameter ≥ d for
each pair k ≥ 3 and d ≥ 3 is addressed in the paper. This problem is
positively solved via the explicit construction. Generalised Schubert cells are
defined in the spirit of Gelfand-Macpherson theorem for the Grassmanian.
Constructed graph, induced on the generalised largest Schubert cells, is
isomorphic to the well-known Wenger’s graph. We prove that the family of
edge-transitive q-regular Wenger graphs of order 2qn, where integer n ≥ 2
and q is prime power, q ≥ n, q > 2 is a family of small world semiplanes.
We observe the applications of some classes of small world graphs without
small cycles to Cryptography and Coding Theory.
It is well known that the diameter of a k-regular graph (or graph with

the average degree k) of order v is at least logk−1(v) and that the random
k-regular graph has diameter close to this lower bound (see [12], c.X, [4],
[20],[14],[15]). Only several explicit constructions of families of k-regular
graphs with diameter close to logk−1(v) are known [12], c.X, sec.1, [24].
Most of them have cycles C3 or C4.
The problem of constructing infinite families of given degree with small

diameter (i.e. with diameter at most c logk−1(v), c ≥ 1 is a constant) with
certain additional properties is far from trivial. This problem has many
remarkable applications in economics, natural sciences, computer sciences
and even in sociology. For instance, the ”small world graph” of binary
relation ”two person know each other” on the set of people in the world,
has small diameter.
The restriction of this problem on the class of bipartite graphs has addi-

tional motivations because such problem for random graphs has been studied
by Klee, Larman and Wright, Harary and Robinson, Bollobś and others (see
the survey in [12], c. X, sec.5).
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Recall that graph Γ be the algebraic graph over K if the set of vertices
V (Γ) and the neighbourhood of each vertex u are algebraic quasiprojective
varieties over the ring K (see [7]).
One of the most important classes of algebraic small world bipartite

graphs with additional geometric properties is a class of regular generalised
m-gon, i.e. regular tactical configurations of diameter m and girth 2m. For
each parameter m, a regular generalised m-gon has degree q + 1 and order
2(1 + q + · · · + qm). Up to parameters as above all known examples of
regular generalised m-gons are geometries of finite Shevalley group A2(q),
B2(q) and G2(q) for m = 3, 4 and 6, respectively (see, previous section).
According to the famous Feit-Higman theorem regular thick (i.e. degree
≥ 3) generalised m-gons exist for m = 3, 4 and 6 only. Thus Generalised
Pentagon does not exist, in particular. Each generalised m-gon has a ho-
momorphism (retraction) onto the geometry of diheadral group Dm, which
is ordinary m-gon.
We underline the following natural generalizations of regular generalised

polygons.

(i) The class of graphs with logarithmic diameter d ≤ c1 logk−1(v) and log-
arithmic girth g ≥ c2 logk−1(v), where c1, c2 are some constants. Such
graphs are important for communication networks (see [6]). The problem
of existence of an infinite family of such graphs with constant degree k
has been solved explicitly by Margulis ([69], [70], [71]) and Lubotzky,
Phillips and Sarnak [66]. These graphs are not bipartite, they are
q + 1-regular Cayley graphs of PSL2(p) (p and q are special distinct
primes) introduced in [69] and investigated in [66]. In this construction
the diameter is bounded by 2 logk−1(v)+2 and the girth g ≈ 4

3 logk−1(v).
This construction supports the existence of graphs with unbounded log-
arithmic diameter and logarithmic girth ≥ g of degree ≥ k for each pair
(k, g). Notice that these graphs are not algebraic, because the neigh-
bourhood of each vertex is not a quasiprojective manifold over the field
Fp of dimension > 1.

(ii) Other generalisation of generalisedm-gon is a flag system with the Cox-
eter metric of dihedral group Dm (for the definition, see [17], [20]). This
class of combinatorial objects is very close to the generalised m-gons.
The examples of such systems different from generalised m-gons are un-
known.

(iii) Let us consider the class of regular semiplanes, which are bipartite
small world graphs and can be epimorphically mapped onto the ordinary
polygons. These two conditions are not so restrictive as existence of flag
systems with Coxeter metrics. The existence of a homomorphism onto
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the ordinary polygon allows to define naturally so called Schubert cells
and small Schubert cells on the vertex-set of the graph.

The purpose of this paper is to prove the existence of graphs from this
class with the diameter ≥ d and degree ≥ k for each pair (d, k) via explicit
constructions. Our main result is the following statement.

Theorem 14. For each integer m, m ≥ 2, and any prime power q, there
exists an algebraic over Fq semiplane SPm(q) of diametrer d, m ≤ d ≤ 2m−
1, of order 2(1+q+. . . qm−1) and degree q+1, which can be homomorphically
mapped onto the geometry of the dihedral group Dm.

Note that SP3(q) and SP4(q) are isomorphic to geometries of groups
A2(q) and B2(q), respectively. Semiplane property insures that the girth of
the graphs SPm(q) is ≥ 6. The Schubert geometry of SPm(q), i.e the totality
of all points and lines at maximal distance from standard flag, turns out
to be Wenger graph Wn(q), q > 2 [127], which is useful for applications in
Computer Science. Some of such applications of graphs with small diameter
and without cycles C3, C4 (Cryptography, Coding theory) we will observe
in the last section of the paper.
The problem to evaluate the diameter of Wenger graph was open since

graphs had been defined by equations over Fq. In section 5 we prove that
graph Wn(q), q ≥ n form a family of small world graphs of unbounded
degree and diameter.
Notice that the vertex set of SPn(q) graphs and neighbourhood of each

vertex are projective varieties over Fq. In case of Wenger graph these sets
are affine varieties over Fq.
Graphs SPm(q) are defined via equations over Fq written in terms of field

addition and multiplication. If we change Fq onto general commutative field
K we will get graphs SPm(K). If K is infinite then SPm(K) are infinite
graphs of diameter ≥ m such that we can find a pass of length t, t ≤ 2m+1
fast, i.e. with O(m2) arithmetic operations.
An incidence structure is a semiplane if two distinct lines are intersecting

not more than in one point and two distinct points are incident not more
than in one line. As it follows from the definition, graphs of the semiplane
have no cycles C3 and C4.
The graph is k-regular if each of its vertex has degree k, where k is a

constant.
Let us consider an incidence structure with point set P and line set

L, which are two copies of n-dimensional vector space over Fq. It will be
convenient for us to denote vectors from P as

x = (x) = (x1,0, x1,1, x2,1, x3,1, . . . xi,1, . . . )
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and vectors from L as

y = [y] = [y0,1, y1,1, y2,1, y3,1, . . . , yi,1, . . . ].

We say that point (x) is incident with the line [y] and we write it xIy or
(x)I[y] if and only if the following conditions are satisfied:

yi,1 − xi,1 = yi−1,1x1,0

where i = 1, 2, . . . .
Let W(q) be the incidence graph of the structure Γ(Fq) = (P,L, I). For

each integer k ≥ 2 let Γ(l, Fq) = (P (k), L(k), I(k)) be the incidence system,
where P (k) and L(k) are the images of P and L under the projection of
these spaces on the first k -coordinates and binary relation I(k) is defined by
the first k equations. Finally, letWk(q) be the incidence graph for Γ(k, Fq).
This is exactly the graph which has been defined by Wenger [127]. Graph
W(q) is a projective limit of Wk(q) when k goes to infinity.
Let Pm be the incidence graph of the incidence structure of points (ver-

tices) and lines (edges) of the ordinary m-gon.
For the prime powers k and integers m ≥ 3 define a family F (k,m) of

incidence structures satisfying the axioms (A1)-(A5) below.

(A1) F (k,m) is a family of small world graphs;
(A2) Each γ ∈ F (k,m) is a k + 1-regular tactical configuration;
(A3) γ ∈ F (k,m) is a semiplane;
(A4) For each γ ∈ F (k,m) there is a homomorphism φ : γ → Pm and
monomorphism η : Pm → γ such that φ ◦ η is the identity map and
η(Pm) is the set of fixed points of η ◦ φ;

(A5) there is a flag {p, l} ∈ Pm such that dist(u, η(p)) = dist(u, η(p)) and
dist(u, η(l)) = dist(u, η(l)) if and only if φ(u) = φ(v);

Remark 1. Members of the family as above depend on two parameters
k and m. The axiom (A1) is the property of the whole family. Axioms
(A2), (A3), (A4) are requirements for each member of the family, so in fact
we have infinitely many axioms Ai(k,m), i = 2, 3, 4, 5, k = pn > 2, p is a
prime number, n ≥ 1, m ≥ 3.

Remark 2. If we add the axioms (A6)(k,m): diamF (k,m) = diamPm,
girth(F (k,m)) = girth(Pm) = 2m then the list of axioms will be contradic-
tory, because of Feit-Higman theorem (regular generalised m-gons of degree
r > 2 exist only for m ≤ 12 ).

In the next section we construct explicitly a family of graphs satisfying
the axioms A(1) −A(5), so the list of axioms is not contradictory.
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The axioms (A4) and (A5) alow us to define the generalised Schubert
cells in the following way: vertices u and v are in the same cell if and only
if φ(u) = φ(v) (or distances from u and v to the elements of standard flag
{p, l} are the same). We can also consider generalised small Schubert cells: u
and v are in the same cell if dist(u, x) = dist(v, x) for each x ∈ η(Pm). Last
equivalence relation is defined in the spirit of Gelfand-MacPherson theorem
for the Grassmanian [32], [33]. Note, that axioms (A4) and (A5) guarantee
that the graph is connected: there is a walk from each vertex v to the vertex
of standard flag.

Remark 3. For each prime power k ≥ 2 infinite family of graphs
F (k,m), m = 3, 4, . . . is the family of small world graphs of bounded degree.

Remark 4. We can fixe the parameter m in our requirements (A1) -
(A6) (formally we will get the list Lm of axioms A1m, A2m, A3m, A4m,
A5m, A6m and define the family F (k,m), where k runs throw all prime
powers but m is chosen. Note, that the whole properties are corollaries
from A2m and A6m, which are axioms of regular generalised m-gon which
order is a prime power. So this list is contradictory if and only if m is not 3,
4 or 6. The geometries of simple groups A2(k), B2(k) and G2(k) are models
for the lists of axioms L3, L4 and L6, respectively.

3.4.2. Main construction

Let us consider the dihedral group Dm and its geometry. The Coxeter
groupDm is defined as a group with generators a and b and generic relations
(ab)m = e, a2 = e and b2 = e. The order of Dm is 2m. The point set and the
line set for the geometry Dm is the totality of cosets Dm : (a) and Dm : (b),
respectively. Two classes α and β are incident αIβ if and only if |α∩β| = 0
It is easy to see that the geometry is just the incidence structure Pm of
vertices (points) and edges (lines) of the ordinary m-gon.
The totality of mirror symmetries (reflections) of ordinary m-gon is

the set of the elements with odd length with respect to thee irreducible
decomposition into letters of the alphabet {a, b}. It contains the words
a, b, aba, bab, . . . , and the longest element is (ab)ra = (ba)rb, 2r+1 = 2[m/2].
Let l(α), α ∈ (Dm : (a)) ∪ (Dm : (b)) be the length of the coset α, i. e.

the minimal length of the irreducible representation for representatives of
α. Let ∆ be the totality of all reflections of the Coxeter group Dm. To each
element α ∈ Γ(Dm) we construct the set ∆(α) = {w ∈ ∆|l(wα) ≤ l(α)}.
and the vector space V (α) = (Fq)

∆(α) = {f : ∆(α) → Fq}. We can consider
such a vector space as a subspace of Fq

∆ consisting of elements satisfying
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condition f(x) = 0 for x ∈ ∆−∆(α). The natural basis of Fq
∆ is the

totality of er, where er(r) = 1 and er(r
′) = 0, r 6= r′. Let us use ”double

index notation” for the basis elements: ea = e1,0, eb = e0,1, eaba = e2,1,
ebab = e3,1, . . . , eab[m/2]a = em−2,1.
We can turn Fq

∆ into an alternating linear algebra with the multipli-
cation ∗, such that e1,0 ∗ e0,1 = e1,1, e1,0∗ei,1 = ei+1,1, i = 1, . . . ,m − 3
and product of other basis elements is zero. Note that this operation is not
associative. In fact it is a Lie bracket (see the last section of the paper).
Let us consider now the following new incidence structure on the set

Γ̃(Dn) of elements (α, x), α ∈ Γ(Dn) (element of ordinary n-gon), x ∈ Fq,
We shall assume that (α, x) is a point if and only if α is a point of ordinary
n-gon. Two pairs (α, x) and (β, y) are incident (relation I ′) if and only if
the following two conditions hold

(i) αIβ within geometry of ordinary m-gon
(ii) x− y|∆(α)∩∆(β) = x ∗ y.
The graph of the incidence relation I ′ will be denoted as SPm(q).
We can identify elements of kind (α, 0), where 0(x) = 0 for each x ∈ ∆

with the elements of Γ̃. Thus we have a natural embedding η of Γ into Γ̃.
Let us use the term standard flag for (a), (b).

Proposition 16. The degree of each element of Γ̃ is q + 1. The diameter
of Γ̃ is bounded by 2m − 1. The map φ : Γ̃ → Γ, φ(α, x̄) = α, is the
homomorphism onto the geometry of ordinary m-gon, the map η : Γ → Γ̃ is
monomorphism, φ◦η is an identity map and η(Γ) is the set of fixed elements
of η ◦ φ.
Proof. The definition of the incidence relation for Γ̃ implies that φ is an epi-
morphism. Let (α, f) be the vertex of Γ̃. The element α has two neighbors
α1 and α2 in the polygon. Without loss of generality we may assume that
l(α1) < l(α2). It is clear that ∆(α1) ⊂ ∆(α2) and, as it follows from the
definition of the incidence, there is a unique neighbour u of (α, f) such that
φ(u) = α. In fact, it is (α1, f |∆(α1)). For the neighbour of (α, f) of kind
α2 we have two different cases: if l(α2) > l(α1), then ∆(α2) includes ∆(α1)
and |∆(α2) \∆(α1)| = 1 and we have q-neighbours of kind (α, g), such that
g|α1 = f . Let l(α2) = l(α), i.e. the cosets α2 and α have maximal length.
Then |∆(α2)| = |∆(α)| = m− 1 and |∆(α) ∩∆(α)| = m− 2. As it follows
from the definition of the incidence relation, the neighbour of kind (α2, g) is
uniquely determined by g(w), where {w} = ∆(α2) \ (∆(α2) ∩∆(α)). Thus
we have exactly q options there. It means that the degree of each vertex of
Γ̃ has degree q + 1.
Let v and u be the vertices of Γ̃, their minimal distance to some element

of the standard flag is restricted by m − 1. If v and u are elements of the
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same type then the shortest walks from them to elements of the standard
flag have the same last element. Thus dist(u, v) = 2m−2. If these elements
are of different type then we can combine the shortest walk from the first
element, edge of the standard flag and reverse for the shortest walk from the
second element to the standard flag. It means that the dist(u, v) ≤ 2m− 1.

Proposition 17. The graph SPm(q) is a semiplane.

Proof. We have to prove that the common neighbourhood for two distinct
vertices u and v of the same type (both points or both lines) contains at
the most one element. Let us consider the case φ(u) 6= φ(v). Without loss
of generality we may assume that ∆(φ(u)) contains ∆(φ(v)) and write u as
(α, f). There is a unique common neighbour β of φ(u) and φ(v) and ∆(β)
is a subset of ∆(α). It means that the only possible option for the common
neighbour is (β, f |∆(β)). In fact, the condition of the existence of the unique
common neighbour is v = (φ(v), f∆(φ(v))).
Let β be one of the two common neighbours for α in the pentagon. We

can write u and v as (α, f1) and (α, f2), respectively. Then a possible com-
mon neighbour of u and v can be written as (β, g). Consider the following
cases:

(i) If l(β) > l(α) then ∆(β) contains ∆(α) and f1 = f2 = g|∆(α). Thus
u = v and we get a contradiction in this case.

(ii) ) Let l(β) < lα, then possible neighbours have form (β, f1|∆(α)).
The condition of the existence of common neighbour for u and v is
f1(x) = f2(x) for x ∈ ∆. Then the unique neighbour of u and v exist
in the case f1(x) = f2(x) for x ∈ ∆(β). Note that f1(r) 6= f2(r) for the
single root r in ∆(α) \∆(β).

(iii) Let l(β) = l(α) and g(r′) = x for r′ 6= ∆(α). The values f1 and
f2 are the following tuples (ar, a1,1, . . . am−2,1) and (br, b11, . . . , bm−2,1),
where r is a simple root different from r′. Let e(r) = 1 for r = (1, 0) and
e(r) = 0 for r = (0, 1). If ar 6= br then possible x is uniquely defined
from the system of two equations

a1,1 − x1,1 = e(r)arx, b1,1 − x1,1 = e(r)brx.

Note that in this case a1,1 6= b1,1 and there is no neighbour w with
l(φ(w)) = m − 1. Let ar = br then from the incidence equations we are
getting f1 = f2 which contradicts to u 6= v.
Thus u and v have at most one common neighbour.

Proposition 18. The Schubert substructure of Γ̃ = SPm(q) is well defined.
It is isomorphic to the Wenger graph Wm−1(q).
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Proof. Let us consider point p and lines l of Γ̃ with the property l(φ(p)) =
m− 1, l(φ(l)) = m− 1 and pIl. Then distances from p and l to the nearest
vertex from the standard flag equal m − 1. Thus the generalised largest
Schubert cells are well-defined. Let p = (α, f), l = (β, g), f and g are
defined by tuples (a1,0, a1,1, . . . , am−2,1) and (b0,1, b1,1, . . . , bm−2,1). Then
incidence condition of Γ̃ implies

ai+1,1 − bi+1,1 = a1,0bi,1, i = 0, 1, . . . ,m− 3.

These are the equations that define the Wenger graph.

Propositions 3.1-3.3 imply immediately Theorem 1.1 and show that the
family of graphs SPm(q) satisfies to the axioms A(1)−A(5).

Remark. Ordinarym-gon is the incidence geometry for diheadral group
Dm of order 2m. The generalisation of our construction for the case of any
Coxeter group the reader can find in [102] r [112]. It is more general, than
the blow-up operation in [104] and [105], so in [102] the reader can find wide
family of graphs which contaiins incidence geometries of simple groups of
Lie type.

3.4.3. Schubert transitivity

Let us consider the affine Kac-Moody Lie algebra L = Ã1 over the fieldK
defined via 2×2 symmetric extended Cartan matrix (aij) with a11 = a22 = 2
and a12 = −2 see [35]. It has a Cartan decomposition L−⊕H⊕L+, whereH
and H⊕L+ are the Cartan and the Borel algebras respectively. The algebra
L+ is a direct sum of one dimensional root subalgebras corresponding to
positive roots. The set of positive roots in the standard basis of simple roots
α1 and α2 can be written as tuples (i + 1, i), (i, i), (i, i + 1), i = 0, 1, . . . .
Let < be the lexicographical order on the set of positive roots. Let eα be
the basic element from the root subalgebra Lα. We choose a basis of L such
that [eα, eβ ] = eα+β if α < β and α+ β is a root, and identify the elements
of L with the tuples in this basis.
For each positive root α and l ∈ K we consider the automorphism tα(l) =

exp(ad(leα)) of the infinite dimensional Lie algebra L
+. This automorphism

can change infinitely many components of the vector from L+, but the close
formulae for the i-th component of tα(l)(x), x ∈ L+, is the polynomial
expression in variables x1, . . . xi.
Let us consider the direct sum L(α) of Lβ such that β ≤ α. Then tr(l)

acts naturally on L(α). Let U and U(α) be the groups generated by tr(l)
where er ∈ L+ and er ∈ L(α), respectively. Then U an U(α) act regularly,
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i.e. transitively with a trivial point stabilizer, on the vector spaces L and
L(α), respectively.
Consider the subalgebra P of L generated by elements eα1 and eβ , where

β = α1 + α2. Then P is a direct sum of Lr, where r = (i + 1, i) and (i, i).
Let P (α) = P ∩ L(α), where eα ∈ P . Groups U(P ) =< tr(l)|er ∈ P > and
UP (α) = U(P ) ∩ U(α) act regularly on P and Pα, respectively. We will
denote any root α = lβ + α1 corresponding to a root subspace from P as
(l, 1). We will also restrict the order < on this set of roots: (l, 1) < (l′, 1) if
and only if l < l′.
The following statement is immediate corollary from the definitions.

Proposition 19. The Lie algebra (F∆
q , ∗), which defines the graphs SPm(q),

is isomorphic to L(α) for α = (m − 2, 1), considered as a Lie algebra over
the ground field Fq.

Next statement is equivalent to the flag transitivity of the Schubert
substructure (Schubert transitivity) for the semiplane SPm(q).

Theorem 15. Wenger graph Wm(q) is an edge transitive.

Proof. Consider first the case of charFq ≥ m. Let α∗ be the dual root for
α = (1, 0). Then α∗ is a basis element of the Cartan subalgebra H. The
multiplication rule in H ⊕ L+ for α is [α∗, er] = 2er, where r 6= (0, 1) and
[α∗, e0,1] = 0.
Let us consider the external derivation β∗ which is ”dual” to β = (0, 1):

[β∗, er] = β∗(r)er, where β∗(i, 1) = i and consider the the subalgebra
L̃ =< α∗, β∗, L+ >. We shall identify points (x1,0, x1,1, . . . , xm−1,1) and
lines [y0,1, y1,1, . . . , ym−1,1] with the elements

x̃ = α∗ +

m−1
∑

i=1

1

i
xi,1ei,1 + x1,0e1,0

and

ỹ = β∗ +
1

2

m−1
∑

i=0

yi,1ei,1,

respectively.
We can rewrite the incidence condition of Wenger graph in the form

[x̃, ỹ] = 0. Elements u = tr(l) preserve the Lie bracket and the group
UP (α), α = (m − 1, 1) acts regularly on the set of pairs (x̃, ỹ) such that
[x̃, ỹ] = 0 according to the rule: x̃ → x̃u|(L+−L0,1), ỹ → ỹu|(L+−L1,0). Thus
Wenger graph is an edge transitive for p = char(Fq) ≥ m.
We can write close formula for each transformation tα(l) acting on P ∪L

in the form xr → xr + fr(x1,0, . . . , xr′), yr → yr = gr(y0,1, . . . , yr′), r
′ < r,
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which preserve the incidence relation for the case of small characteristic as
well.
These transformation generate the group which acts regularly on the

vertices of Wenger graph.

The spanning tree of the graph G with the vertex set V (G) and edge st
E is the tree T with vertex set V and the edge set which is subset of E.
Let us remove all edges between elements from the ”largest Schubert

cells” i.e. elements of kind (α, x), where l(α) = m−1. After the completion
of this operation we shall get the graph STm(q).

Lemma 14. Graph STm(q) is a spanning tree for the graph SPm(q).

Proof. Let us consider the process of walking from one of the vertices (<
a >, 0) or (< b >, 0) which does not contain the edge between these two
vertices. This branching processes produce rooting trees T<a> and T<b>.
They do not contain common vertices. So adding extra edge between
(< a >, 0) and (< b >, 0) leads to the tree STm(q), which contains all
vertices of PCm(q).

Let us simplify the notations for basic elements of Ln(q).
It can be considered as Lie algebra with the basis e1, e2, . . . , en such

that ei × e1 = ei+1, e1 × ei = −ei+1, i ≥ 2, ei × ej = 0 if 1 is not an
element of {i, j}. The Wenger graph Wn−1(q) corresponds to the following
incidence relation I on L ∪ P where pIl holds for l = [x2, x3, . . . , xn] and
p = (y1, y3, . . . , yn) if and only if ym − xm = y1xm−1 for each m = 3, . . . , n
(see [36]).
Let us consider the polynomial bijections ti(x), x ∈ Fq, i = 1, . . . , n

defined on P ∪ L by the following formulae:

(a1, a3, . . . , an)
t2(x) = (a1, a3 + a1x, a4, . . . , an),

[b2, b3, . . . , bn]
t2(x) = [b2 + x, b3, . . . , bn];

(a1, . . . , ak, . . . an)
tk(x) = (a1, . . . , ak−1, ak + x, ak+1 + a1x, . . . , an),

[b2, . . . , bk, . . . , bn]
tk(x) = [b2, . . . , bk−1, bk + x, bk+1, . . . , bn], k ≥ 3;

(a1, . . . an)
t1(x) = (a1 + x, a3, . . . , ak − C1

k−3ak−1x+ . . .

+ Ci
k−3x

i(−1)i + . . . ),

[b2, b3, . . . , bn]
t1(x) = [b2, b3 − b2x, . . . , bk −C1

k−2bk−1x+ . . .

+ Ci
k−2bk−i−xi . . . ],
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where Ci
k is a binomial coefficient.

The following statement follows immediately from the above formula.

Proposition 20. For every x ∈ K the transformations ti(x), i = 1, . . . , n
are automorphisms of Wn−1(q).

In fact the group U =< ti(x)|i = 1, . . . , n > coincides with the edge
transitive group used in the proof of Theorem 4.2.

3.5. On the diameter of Wenger graph

Theorem 16. If q ≥ n, then the diameter of the Wenger graph Wn(q) is
bounded by 2n+ 2.

Proof. We shall work with the incidence structure (P,L, I), where

P = {(x) = (x1, x2, . . . , xn)|xi ∈ Fq, i = 1, . . . , n},
L = {[y] = [y1, . . . , yn]|yi ∈ Fq, i = 1, . . . , n}

are poin-set and line-set, (x)I[y] if and only if

yi − xi = y1xi−1, i = 2, . . . , n.

The map

(a1, a3, . . . , an) → (−a1,−a3, . . . ,−an+1),

[b2, b3, . . . , bn+1] → [−b2,−b3, · · · − bn+1]

establish the isomorphism between Wenger graphWn(q) and incidence graph
of binary relation I. Let us investigate the walks

[y0]I(x0)I[y1]I(x1)I . . . I[yn−1]I(xn−1)I[yn]I[yi]I(xi)I[yi+1]

for i = 0, . . . , n−1 of length 2n between two lines of the incidence structure.
We can assume that the first line [y0] is zero line [0] because we proved the
edge transitivity of the graph. Let z1, i = 1, . . . , n be the first component of
tuples [y1]. We write the first components of [y

i] in the form yi−1
1 +zi. Then

the first component of [yn] will be z1+z2+. . . zn. Let us assume that the first
component of the point (xi), i = 0, . . . , n − 1 is ai. Note that the starting
point and first components of points and lines define our walk. We can use
the incidence equations and write the components [b1, b2, . . . bn] = [yn] of
the last line explicitly:
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z1 + z2 + . . . zn = b1

a0z1 + a1z2 + . . . an−1zn = b2

a0
2z1 + a1

2z2 + · · · + an−1
2zn = b3

. . .

a0
n−1z1 + (a1)

n−1z2 + . . . an−1
n−1zn = bn

So we get the system of linear equations in variables z1, . . . zn with the
Vandermonde determinant D, which is the product of (n − 1)n/2 differ-
ences (ai − aj), where i, j are distinct elements of {0, 1, . . . , n − 1}. It
means that if q ≥ n we can take arbitrary line [b1, b2, . . . , bn] chose dis-
tinct elements a0, a1, . . . , an , get the solution of the above system of linear
equations z1 = c1, c2, . . . , cn. So we have a walk from [0] to [b1, . . . , bn]
defined by the sequence of first components 0, a0, c1, a1, c1 + c2, a2, . . . c1 +
c2 . . . ,+cn−1, an−1, c1 + c2 + · · · + cn. So we constructed the walk between
zero line and [b1, dots, bn] and proved that the maximal length between two
lines is bounded by 2n. Note that we can add zero point (0) to our walk
between [0] and [b1, . . . , bn] and edge transitivity of the graph allows us to
bound the maximal distance between point and line by 2n + 1. Finally,
we can take arbitrary point (p) and its neighbour [n] and get the pass and
construct the walk from (0) to (p) of length ≤ 2n + 2.

Corollary 5. The family of Wenger graphs Wn(q), q ≥ n ≥ 2, q > 2 is
family of small world graphs.

Remark. It can be shown that for each q the family of graphs Wn(q),
n = 2, 3, . . . is not a family of small world graphs, but the ”enveloping
graphs” SPn(q) form the family of small world graphs without cycles C4 for
each q. So such a family do not satisfy to the axiom A4 and A5.

3.6. Automorphisms and connected components of D(n,K)
in case of general commutative ring K

We need the following well known results on groups acting on graphs.
Let G be a group with proper distinct subgroups G1 and G2. Let us

consider the incidence structure with the point set P = (G : G1) and the
line set (G : G2) and incidence relation I : αIβ if and only if the set
theoretical intersection of cosets α and β is nonempty set. We shall not
distinguish the incidence relation and corresponding graph Γ(G)G1,G2. Let
l(g) be the minimal length of representation of g in the form of products
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of elements from G1 and G2 The following statement had been formulated
first by G. Glauberman.

Lemma 15. Graph I is connected if and only if < G1, G2 >= G. The
diameter of I is max l(g), g ∈ G.

Let

A =< a1, . . . , an|R1(a1, . . . , an), . . . , Rd(a1, . . . , an) >,

B =< b1, . . . bm|S1(b1, . . . bm), . . . , St(b1, . . . , bm) >

are subgroups with generators ai, i = 1, . . . , n and bj, j = 1, . . . ,m and
generic relations Ri, i = 1, . . . , d and Sj, j = 1, . . . , t, respectively. Free
product F = A ∗B of A and B be the subgroup

< a1, . . . , an, b1, . . . , bm|R1, . . . Rd, S1, . . . , St > (see [68]).

The definition of an operation of free product FH of groups A and B
amalgamated at common subgroup H can be found in [68]. If H =< e >,
then FH = A ∗B.
Theorem 17. (see, for instance [68]) Let G acts edge transitively but not
vertex transitively on a tree T . Then G is the free product of the stabilizers
Ga and Gb of adjacent vertices a and b amalgamated at their intersection.

Corollary 6. Let G acts edge regularly on the tree T , i. e. |Ga ∩Gb| = 1.
Then G is the free product Ga ∗Gb of groups Ga and Gb.

In section 2. 5 we define the family of graphs D(k,K), where k > 2
is positive integer and K is a commutative ring, such graphs have been
considered in [59] for the case K = Fq.
The incidence relation motivated by the linear interpretation of Lie ge-

ometries in terms their Lie algebras [105] (see [104]). Let us define the ”root
subgroups” Uα, where the ”root” α belongs to the root system

Root ={(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′ . . . ,
(i, i), (i, i)′ , (i, i + 1), (i + 1, i) . . . }.

The ”root system above” contains all real and imaginary roots of
the Kac-Moody Lie Algebra Ã1 with the symmetric Cartan matrix. We just
doubling imaginary roots (i, i) by introducing (i, i)′.
Group Uα generated by the following ”root transformations” tα(x), x ∈

K of the P ∪ L given by rules pβ = pβ + rβ(x), lβ = lβ + sβ(x), where
β ∈ Root and the functions rβ(x), sβ(x) are consist of summands defined
by the following tables (i ≥ 0, m ≥ 1).
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TABLE 2

Proposition 21. (i) For each pair (α, x), α ∈ Root, x ∈ K the trans-
formation tα(x) are automorphisms of D(K). The projections of these
maps onto the graph D(n,K), n ≥ 2 are elements of Aut(D(n,K)).

(ii) Group U(K) acts edge regularly on the vertices of D(K).
(iii) Group U(n,K) generated by projections of tα(x) onto the set of ver-
tices V of D(n,K) acts edge regularly on V .
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Proof. Statement (i) follows directly from the definitions of incidence and
closed formulas of root transformations tα(x). Let < be the natural lexi-
cographical linear order on roots of kind (i, j), where |i − j| ≤ 1. Let us
assume additionally that (i, i) < (i, i)′ < (i, i + 1). Then by application of
transformations tα(xα), α 6= (0, 1) to a point (p) consecutively with respect
to the above order, where parameter xα is chosen to make α component
of the image equals zero, we are moving point (p) to zero point (0). A
neighbour [a, 0, . . . , 0] of the zero point can be shifted to the line [0] by the
transformation t(1,0)(−a). Thus each pair of incident elements can be shifted
to ((0), [0]) and group U acts edge regularly on vertices ofD(K). This action
is regular ((ii)) because the stabilizer of the edge (0), [0] is trivial. Same
arguments about the action of U(n,K) justify (iii).

Remark. For K = Fq this statement had been formulated in [59].

Let k ≥ 6, t = [(k + 2)/4], and let

u = (uα, u11, . . . , utt, u
′
tt, ut,t+1, ut+1,t, . . .)

be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u is
a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =

r
∑

i=0

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at).
Proposition 22. (i) The classes of equivalence relation

τ = {(u, v)|a(u) = a(v)}

form the imprimitivity system of permutation groups U(K) and U(n,K)
(ii) For any t− 1 ring elements xi ∈ K), 2 ≤ t ≥ [(k+2)/4], there exists
a vertex v of D(k,K) for which

a(v) = (x2, . . . , xt) = (x).

(iii) The equivalence class C for the equivalence relation τ on the set
Kn ∪Kn is isomorphic to the affine variety Kt ∪Kt , t = [4/3n] + 1 for
n = 0, 2, 3 mod 4, t = [4/3n] + 2 for n = 1 mod 4.

Proof. Let C be the equivalence class on τ on the vertex set D(K) (D(n,K)
then the induced subgraph, with the vertex set C is the union of several
connected components of D(K) (D(n,K)).



3.6. Automorphisms and connected components of D(n,K) in case of general
commutative ring K 89

Without loss of generality we may assume that for the vertex v of
C(n,K) satisfying a2(v) = 0, . . . at(v) = 0. We can find the values of com-
ponents v′i,i) from this system of equations and eliminate them. Thus we can

identify P and L with elements of Kt, where t = [3/4n] + 1 for n = 0, 2, 3
mod 4, and t = [3/4n] + 2 for n = 1 mod 4.

We shall use notation C(t,K) (C(K)) for the induced subgraph of
D(n,K) with the vertex set C.

Remark. If K = Fq, q is odd, then the graph C(t, k) coincides with
the connected component CD(n, q) of the graph D(n, q) (see [62]), graph
C(Fq) is a q-regular tree. In other cases the question on the connectedness
of C(t,K) is open. It is clear that g(C(t, Fq)) is ≥ 2[2t/3] + 4.

Let Uα =< tα(x)|x ∈ K > be a subgroup of U(K). It is isomorphic
to the additive group K+ of the ring K. Let UC be subgroup generated
by tα(x), x ∈ K, α ∈ {(0, 1, (1, 0), . . . , (i, i), (i, i + 1), . . . }. Let Un

C be
the subgroup generated by transformations tα(x) from UC onto the graph
D(n,K) (or C(n,K)).

Proposition 23. (i) The connected component CD(n,K) of the graph
D(n,K) (or its induced subgraph C(t,K)) is isomorphic to
Γ(Un

C)U(0,1),U(1,0)
.

(i) Projective limit of graphs D(n,K) (graphs C(t,K), CD(n,K) ) with
respect to standard morphisms of D(n + 1,K) onto D(n,K) (their re-
strictions on induced subgraphs) equals to D(K) (C(K),
CD(K) = UC

U(0,1),U(1,0)
, respectively).

If K is an integrity domain, then D(K) and CD(K) are forests. Let C
be the connected component, i.e tree.
Group UC acts regularly on CD(K). So we can apply theorem on group

acting regular on the tree and get the following statement.

Proposition 24. If K is integrity domain then group UC(K) is isomorphic
to the free product of two copies of K+.

Theorem 18. The diameter of the graph Cm(K), m ≥ 2, where K is a
commutative ring with unity of odd characteristic, is bounded by function
f(m), defined by the following equations:

f(m) =







(32/3)(4(m+1)/3 − 1)−m+ 7, for m = 2 (mod 3)
(32/3)(4(m−1)/3 − 1) + 4(m+5)/3 −m+ 7 for m = 1 (mod 3)
(32/3)(4m/3 − 1) + 32 × 4(m−3)/3 −m+ 7, for m = 0 (mod 3)
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Proof. Let C = Ct(K) be the block of equivalence relation τ , containing
zero point and zero line. Let us consider the stabiliser of this block. It is
clear that group G generated by elements ti,i+1(x), ti+1,i(x), i ≥ 0, t1,1(x)
and ti(x) = ti,i(x)t

′
i,i(x), i ≥ 2, x ∈ K stabilises C and acts regularly on

this set.
Let l(g) be the minimal length of irreducible representation of g ∈ G in

the form

T1(x1)T2(x2) . . . Td(xd), xi ∈ K, (3.1)

where consecutive elements Ti(xi) and Ti+1(xi+1) belong to different
subgroups U1 and U2.
As it follows from the group theoretical interpretation of lemma 3 the

diameter of group G is equal to the maximal length l(g).
Let G1,1 be the totality of all commutator elements [t0,1(x), t1,0(y)] =

t(x, y). Then applications of T1,1(y) = t(1, y) to zero point (0) (or line) do
not change its first component. For the second component u1,1 of (u) =
(0)T1,1(y) we have u1,1 = y. In fact, (O)T1,1(y) = (O)t1,1(y) and l(u) ≤ 4.
Let us consider the totality G1,2 of the commutators

t(x, y) = [t0,1(x), T1,1(y)].

Then its action of on zero line (point) does not change its first, second
components. The third component will be 2xy. Let us consider T1,2(y) =
t(x/2, y). Let u = [O]T1,2(y), then u1,2 = y. Similarly, we construct
the totality G2,1 of commutators t(x, y)[t1,0(x)T1,1(y)] containing element
T = T2,1(y), such that O

T = OT2,1(y) = [0, 0, 0, y, . . . ]. We can write the
irreducible presentation of g ∈ G in the form (3.1) starting either with
element from U1 or U2. It means that l(g) ≤ 8 for g ∈ G1,2 ∪G2,1

Let us define G2,2 as totality of commutators [t1,0(x), T1,2(y)] (or equiv-
alently as set of elements of kind [t0,1(x), T2,1(y)]. Then for element t ∈ G2,2

we have Ot = Ot2(xy) = (0, 0, 0, 0, xy, xy, . . . ). We have l(g) ≤ 16 for
g ∈ G2,2.
We can define recurrently Gi,i+1, Gi+1,i and Gi+1,i+1 , i ≥ 2 as totalities

of elements of kind [t0,1(x), Ti,i(y)], [t1,0(x), Ti,i(y)] and
[t0,1(x), Ti,i+1(y)], respectively. The length of elements from Gi,i+1 and
Gi+1,i are bounded by 22i+1 and l(g) ≤ 22i+2 for g ∈ Gi+1,i+1). Notice,
that the element g ∈ Gα acting on element v (point or line) changing only
components vβ , β > α. We can find an element g ∈ Gα, such that for
u = vg the component uα equals zero.
Let u ∈ G be element such that Ou = v. Then by consecutive applica-

tions of appropriate transformations g ∈ Gα with respect to natural order
on roots we can move v to O It means that each element g ∈ G can be
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presented as product g0,1g1,0g1,1 . . . gα . . . , where gα ∈ Gα. Let d(α) be the
length of gα. We can bound the length of g by the sum S of dα. In case when
α is not simple root we have a choice to write irreducible representation of
gα, is with the first character from U1 or the one from U2. It allows slightly
improve the bound foe the diameter - get S −m+ 1 instead of S.
Let us count S for the case m = 2mod 3. If m = 2 then S = 6. In

case of m ≥ 5 each triple of roots (i, i + 1), (i + 1, i), (i + 1, i + 1), i ≥ 1
contributes summands 22i+1, 22i+1 and 22i+2. So we can count S via the
sum of the geometrical progression.
Let m = 2mod 3 then each triple as above contribute summand 22i+3.

So we have the geometrical progression 22i+3, i = 1, . . . (m−2)/3. The roots
(0, 1), (1, 0) and (1, 1) contribute 6.
In case m = 0mod 3 we have a geometrical progression 22i+3, i =

1, . . . ,m/3− 1 and last root contributes 32× 4m/3−1.
In case m = 1mod3) we have a geometrical progression 22i+3, i =

1, . . . , (m− 4)/3 and two last roots contributes 64× 4(m−4)/3

This way we are getting the formulae for the bound.

Remark. Theorem 1 follows directly from theorem 12 and Proposition
3.

3.7. On some applications

The idea to use simple graphs of large girth in Cryptography had been
explored in [107], [108], [109], [110], [111], [113], [114], [116], [117], [118],
[119], in particular.
The definitions of family of graphs of large girth, small world graphs for

the class of irreflexive binary relation graphs will be f0rmulated in chapter
4, where more general encryption scheme for the ”potentially infinite” text
based on the graphs of binary relations with special ”rainbow-like” coloring
of arrows will be proposed.
For this purpose we identify the vertex of the graph with the plaintext,

encryption procedure corresponds to the chain of adjacent vertices starting
from the plaintext, the information on such chain is given by the sequence of
colours (passwords). We assume that the end of the chain is the ciphertext.
The important feature of such encryption is the resistance to attacks,

when adversary intercepts the pair plaintext - ciphertext. It is true because
the best algorithm of finding the pass between given vertices (by Dijkstra ,
see [26] and latest modifications) has complexity nlnn where n is the order
of the graph, i.e. size of the plainspace. The situation is similar to the
checking of the primality of Fermat’s numbers 22

m
+ 1: if the input given
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by the string of binary digits, then the problem is polynomial, but if the
input is given by just a parameter m, then the task is NP -complete.
We have an encryption scheme with the flexible length of the password

(length of the chain). If graphs are connected then we can convert each
potentially infinite plaintext into the chosen string ”as fast as it is possible”.
Finally, in the case of ”algebraic graphs” (see [7]) with the special
”rainbow-like” coloring (symbolic rainbow-like graphs of section 3) there

is an option to use symbolic computations in the implementation of graph
based algorithm. We can create public rules symbolically and use the above
algorithm as public key tool (for the example of implementation look at [40]).
Notice, that for the use of graphs in public key mode the girth property is not
so important. The Wegner graphs can be used effectively for such purpose
(see [99]).
As we mentioned before, the first explicit examples of families with large

girth with arbitrary large valency were given by Margulis. The constructions
were Cayley graphs Xp,q of group SL2(Zq) with respect to special sets of
q + 1 generators, p and q are primes congruent to 1 mod4. The family of
Xp,q is not a family of algebraic graphs because the neighbourhood of each
vertex is not an algebraic variety over Fq. For each p, graphs Xp,q, where
q is running via appropriate primes, form a family of small world graph of
unbounded diameter.
The fist family of connected algebraic graphs over Fq of large girth

and arbitrarily large degree had been constructed in [17]. These graphs
CD(k, q), k is an integer ≥ 2 and q is odd prime power had been constructed
as connected component of graphs D(k, q) defined earlier. For each q graphs
CD(k, q), k ≥ 2 form a family of large girth with γ = 4/3logq−1q.
Some new examples of simple algebraic graphs of large girth and arbi-

trary large degree the reader can find in [118].

3.8. On Lie geometries their flag systems and applications in

Coding Theory and Cryptography

We propose some cryptographical algorithms based on finite BN -pair G
defined over the fields Fq. We convert the adjacency graph for maximal flags
of the geometry of group G into a finite Tits automaton by special colouring
of arrows and treat the largest Schubert cell Sch = Fq

N on this variety as a
totality of possible initial states and a totality of accepting states at a time.
The computation (encryption map) corresponds to some walk in the graph
with the starting and ending points in Sch. To make algorithms fast we will
use the embedding of geometry for G into Borel subalgebra of corresponding
Lie algebra. We consider the induced subgraph of adjacency graph obtained
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by deleting all vertices outside of largest Schubert cell and corresponding
automaton (Schubert automaton). We consider the following symbolic im-
plementation of Tits and Schubert automata. The symbolic initial state is
a string of variables xα, where roots α are listed according Bruhat order,
choice of label will be governed by linear expression in variables xα, where
α is a simple root.
Conjugations of such nonlinear map with element of affine group acting

on Fq
N can be used in Diffie-Hellman key exchange algorithm based on

the complexity of group theoretical discrete logarithm problem in case of
Cremona group of this variety. We evaluate the degree of these polynomial
maps from above and the maximal order of this transformation from below.
For simplicity we assume that G is a simple Lie group of normal type but
the algorithm can be easily generalised on wide classes of Tits geometries.
In a spirit of algebraic geometry we generalise slightly the algorithm by
change of linear governing functions for rational linear maps.
According to Hilbert’s approach to Geometry it is a special incidence

system (or multipartite graph). Felix Klein thought that the Geometry was
a group and proposed his famous Erlangen program. J. Tits combined those
two ideas for the development of concept of a BN -pair, its geometry and
flag system [96], [97]. He created an axiomatic closure for such objects based
on the definition of building [98].
Finite geometries Γ(G(q)) of BN -pair G(q) with Weyl group W defined

over finite field Fq, q → ∞ form a family of small world graphs. Really, the
diameters of the incidence graphs for Γ(G(q)) coincide with the diameter
of Weyl geometry Γ(W ), but average degree is growing with the growth of
parameter q. The problem of constructing infinite families of small world
graphs has many remarkable applications in economics, natural sciences,
computer sciences and even in sociology. For instance, the ”small world
graph” of binary relation ”two person shake hands” on the set of people in
the world has small diameter.
The algorithm of finding the shortest pass between two arbitrarily cho-

sen vertexes of Γ(G(q)) is much faster than the action of general Dijkstra
algorithm. One can find the pass in Γ(G(q)) for the time c, where c is a
constant independent on q. Regular graphs of simple groups of Lie type
of normal type of rank 2 (generalised m-gons for m ∈ {3, 4, 6} support the
sharpness of Erdös’ bound from Even Circuit Theorem in cases of cycles of
length 4, 6 and 10 (see [11]).
One of the constructions which provide for each k0 ≥ 2 the infinite family

of regular graphs of degree k, k ≥ k0 of large girth (length of minimal cycle)
is based on the properties of the geometry of Kac-Moody BN -pair G(q)
with diagram Ã1 (see [57], [58], [59])
The geometries of finite BN -pairs are traditionally used in classical
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Coding Theory. Foundations of this theory are based on the concept of
finite distance-transitive or distance-regular metrics (distance regular and
distance transitive graphs in other terminology [17]). Large number of
known families of distance transitive graphs are constructed in terms of
the incidence geometry of BN -pair or geometry of its Weyl group. Known
constructions of families of distance - regular but not distance transitive
graphs are also based on the properties of BN -pair geometries (see [17],
[20]). Linear codes are just elements of projective geometry and all ap-
plications of Incidence Geometries to Coding Theory are hard to observe
(see [82], [34], [78] and further references). Notice that some nonclassical
areas like LDPS codes and turbocodes use objects constructed via BN -pair
geometries: for the first constructions of LDPS codes Tanner [94] used finite
generalised m-gons, the infinite family of graphs of large girth defined in [59]
have been applied to constructions of the LDPS codes ([82], [34], [45], [46],
[39] and further references)
Quite recent development gives an application of linear codes and their

lattices to cryptography. Incidence geometries were used in [110] and [36]
for the development of cryptographical algorithms.
In next units we generalise some 0f these encryption algorithms of and

consider the key exchange protocols based on geometries of BN -pairs.

3.8.1. On Coxeter systems and BN-pairs

An important example of the incidence system as above is the so-called
group incidence system Γ(G,Gs)s∈S . Here G is the abstract group and
Gss∈S is the family of distinct subgroups of G. The objects of Γ(G,Gs)s∈S
are the left cosets of Gs in G for all possible s ∈ S Cosets α and β are
incident precisely when α∩ β 6= ∅. The type function is defined by t(α) = s
where α = gGs for some s ∈ S.
Let (W,S) be a Coxeter system, i.e. W is a group with set of dis-

tinguished generators given by S = {s1, s2, . . . , sl} and generic relation
(si × sj)

mi,j = e. Here M = (mi,j) is a symmetrical l × l matrix with
mi,i = 1 and off-diagonal entries satisfying mi,j ≥ 2 (allowing mi,j = ∞
as a possibility, in which case the relation (si × sj)

mi,j = e is omitted).
Letting Wi =< S − {si} >, 1 ≤ i ≤ l we obtain a group incidence system
ΓW = Γ(W,Wi)1≤i≤l called the Coxeter geometry ofW . TheWi are referred
to as the maximal standard subgroups of W (see [16]).
Let G be a group, B and N subgroups of G, and S a collection of cosets

of B ∩ N in N . We call (G,B,N, S) a Tits system ( or we say that G has
a BN -pair) if

(i) G =< B,N > and B ∩N is normal in N ,
(ii) S is a set of involutions which generate W = N/(B ∩N),
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(iii) sBw is a subset in BuB ∪BswB for any s ∈ S and w ∈ W ,
(iv) sBs 6= B for all s ∈ S.

Properties (1)-(iv) imply that (W,S) is a Coxeter system (see [16], [17]).
Whenever (G,B,N, S) is a Tits system, we call the groupW the Weyl group
of the system, or more usually the Weyl group of G. The subgroups Pi of
G defined by BWiB are called the standard maximal parabolic subgroups of
G. The group incidence system ΓG = Γ(G,Pi)1≤ilel is commonly referred
to as the Lie geometry of G (see [17]). Note that the Lie geometry of G
and the Coxeter geometry of the corresponding Weyl group have the same
rank. In fact there is a type preserving morphism from ΓG onto ΓW given
by gPi → wWi, where w is determined from the equality BgPi = BwPi.
This morphism is called a retraction (see [98]).

3.8.2. Tits and Schubert automata for symbolic computations

The geometry Γ(G) of BN -pair G is the set of all left cosets by the
standard maximal subgroups i.e. maximal subgroups Pi, i = 1, 2, . . . , ni
of G containing standard Borel subgroup B. Two cosets C1 = gPi and
C2 = hPj are incident C1IC2 if and only if their intersection is not empty. It
is clear, that gPi∩hPj 6= 0 implies i 6= j. The maximal flag of the geometry
is a subset F = {C1, C2, . . . , Cn} such that CiICj for each pair (i, j), i 6= j.
Maximal flags form the set FΓ(G), they are in one to one correspondence
with the left cosets by standard Borel subgrop. The largest Schubert cell
Sch is the orbit of B acting on FΓ(G) containing largest number of elements.
In case of group of normal type variety Sch = Sch(G) is isomorphic to vector
space Fq

N , where N is the number of positive roots.
We assume that two maximal flags F1 and F2 are adjacent if their in-

tersection contains n − 1 elements of geometry. Let AF (G) be the simple
graph of symmetric adjacency relation (flag graph for Γ(G). The order of
this simple regular graph is |(G : B)|, the degree is nq and diameter is n.
Let us restrict the adjacency relation as above on the largest Schubert cell
Sch(G). We obtain new graph AS(G) which is a regular induced subgraph
of AF (G) of order qN and degree q − 1. We refer to AS(G) as Schubert
subgraph of the flag graph.
We convert the directed graph of adjacency relation of flags into the

following automaton.
Let (F1, F2) be the ordered pair of adjacency flags such that t(F1∩F2) =

{1, 2, . . . , n} − {s}. So flags differs by geometry elements C1 = Cs
1 and

C2 = Cs
2 of type s from (F1, F2), respectively. The following situations are

possible.
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(i) Element C1 and C2 are from the same Schubert cell. In that case there
unique a transformation u = xα(t), t 6= 0, shifting C1 to C2. Root α
depends on Retr(F1) only.

(ii) Elements C1 and C2 are from different Schubert cells and there is a
group Uα such that (F1∩F2)∪{u(C2)} is an adjacent flag to F1 for each
u = xα(t). Notice, that case t = 0 is a possibility here. Root α depends
on Retr(F1) again.

(iii) Elements C1 and C2 are from different Schubert cells and Schubert cell
contains C2 as unique representative C such that flag (F1 ∩F2)∪{C} is
adjacent to F1.

Let us consider the following labelling of F1 → F2 for cases of (i), (ii)
and (iii) separately:

(i) put the label (s, t). where t 6= 0.
(ii) the label is (s, t), where t ∈ Fq is defined by condition

xα(t)Retr(C2) = C2

(iii) put the label ∞.
So for fixed F1 and fixed type s the label (s, t) in direction to s-adjacency

flag is defined by parameter t taken from the ”acceptable” set Ac(F1) =
Fq ∪ {γ} where γ is one of the symbols 0 and ∞. We add the formal loop
on state F1 labelled by the unique symbol from {0,∞} − {γ}.
So the transition function Ts,t of taking the s-adjacent element of colour

(s, t) for general flag is defined for each t ∈ Fq ∪ {∞} We assume that the
initial state can be any flag from the largest Schubert cell Sch and this cell
is the totality of all accepting states.
So algorithm can be given by the string of labels (s1, t1), (s2, t2), . . . ,

(sd, td) such that the composition T = T (s1, t1)T (s2, t2)T (sd, td) maps Sch
into itself. We are interested only in irreducible computations for which
si 6= si+1 for i = 1.2, . . . d− 1
In case of group of normal type the alphabet contains exactly n(q + 1)

symbols. The computation corresponds to special walks in the graph AF (G)
with the starting and ending point in Sch(G). Notice that C may be not
a bijection. For instance T (s,O), which image for Sch lays outside of the
largest large Schubert cell, is not invertible.
We refer to such automaton as Tits automaton for group G. We would

like to use it as tool for symbolic computations.
The unipotent group U acts regularly on Sch. So we cam identify v ∈ Sch

with certain product of Xα(tα), and positive roots α ∈ Root are taken in
Bruhat order. In fact, we identify the string v = tα ∈ Fq, α ∈ Root+ with
the accepting state v.
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We refer to the list (tα1 , tα2 , . . . , tαn), where α1, α2, . . . , αn is the set of
all simple roots, as the color of v from plainspace. So we are colouring
accepting states now but not arrows.
Let us consider irreducible computation within Tits automaton of kind

v → vs, v1 = T (i1, a1)(v), v2 = T (i2, a2)(v1), . . . , vs = T (is, as)(vs−1), where
ik 6= ik+1, k = 1, . . . , s− 1, ak ∈ Fq ∪∞, element Retr(v) = Retr(vs) equals
to the element w ∈ W of maximal length. Notice, that in the sequence
Retr(v1),Retr(v2), . . . ,Retr(vk) consecutive elements are adjacent in FΓ(W )
or equal.
The computation is conducted into several steps. Each time we have one

of the situations i, (ii) or (iii). In cases of kind (i) and (ii) when the corre-
sponding root α is simple parameters aj will be chosen as linear functions of
kind l(tα1 , tα2 , . . . tαn) = c1tα1 + c2tα2 . . . , cntαn + b, where c1, c2, . . . , cn and
b are elements of Fq and (tα1 , tα2 , . . . , tαn) is a colour of our initial state. If
α is not a simple root, we choose aj as cjtβj

+ fj((tα1 , tα2 , . . . tαn), where
cj 6= 0.
After the completion of our computation we get the accepting state u =

vs. It has a colour (dα1 , dα2 , . . . , dαn) = (tα1 , tα2 , . . . tαn)A+ (b1, b2, . . . , bn),
where the matrix A is defined by some linear expressions of kind

ai = li(l(tα1 , tα2 , . . . tαn), which we used during the computation. We
will require that the matrix A is invertible. Notice that we may use symbol
∞, where the design of algorithm allows such option.
After the completion of algorithm we obtain accepting state of colour

(dα1 , dα2 , . . . , dαn). The invertibility of A allows us to compute
(tα1 , tα2 , . . . tαn) as ((dα1 , dα2 , . . . dαn) − (b1, b2, . . . , bn))A

−1. So we can
compute all parameters ai and create the reverse walk in the graph and
compute the inverse map T−1 which sends the final accepting state to initial
state.
Let us restrict Tits automaton on the largest Schubert cell, i. e delete

all states outside Sch(G) together with corresponding output arrows. We
obtain Schubert automaton over the alphabet (i, a), where a ∈ Fq, 1 ≤ i ≤
n. Notice, that a = 0 corresponds to taking the loop.

3.8.3. Tits and Schubert automata and related symmetric
encryption

Correspondents Alicia and Bob may use the following symmetric en-
cryption based on the Tits automaton. The plainspace is a vector space
Sch = Fq

N . The plaintext p we identify with the string v= tα ∈ Fq,
α ∈ Root+. We may think that this is a function p : Root+ → Fq. Alicia
has to compute the restriction of this function onto subsets of all simple
roots and get the colour (tα1 , tα2 , . . . , tαd

) of the plainspace.
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Correspondents share symbolic string of labels (s1, l1), (s2, l2), . . . , (sd, ld),
where li.i = 1, 2, . . . , d is a linear expression of formal variables zα, for each
simple root α or∞ and two affine invertible transformations τ1 and τ2. The
vector space of all maps from the totality of simple roots to Fq has to be not
invariant subspace for τi, i = 1, 2. Alice executing the specialization zα = pα
computing Corresponding numerical string t = (t1, t2, . . . , td). She has to
hide that string by applications of affine maps τi. So she is adding to sym-
bolic key two invertible Linear transformations τ1 and τ2 of the plainspace
Fq

N and compose τ1, the automaton map corresponding to t and τ2.
She sends to Bob the ciphertext

c = τ1(T (s1, t1)T (s2, t2) . . . T (sd, td)(τ2(p))

Bob decrypt applying to c consequently τ2
−1, T−1, where

T = T (s1, t1)T (s2, t2) . . . T (sd, td)

and τ1
−1.

Remark 1. If correspondents do not use ∞ in the shared symbolic key
then T is the computation in Schubert automaton. Bob can simply compute
T−1 as T (sd,−td)T (sd−1,−td−1) . . . T (s1,−t1).

Remark 2. We may generalise the above algorithms by changing affine
maps τ1, τ2 and (t1, t2, . . . , tn) → (t1, t2, . . . , td)A+(b1, b2, . . . , bn) for general
invertible polynomial maps.

3.8.4. Key exchange protocols based on incidence geometries

The automata as above can be considered over the general ground field
F We can see that the computations in both automata do not use di-
vision. What is going on during the computations on a symbolic level.
Let us assume now that the initial state is a formal string of variables xα,
where α is running through the list of all positive roots. It is convenient
for us to expand the ground field Fq to the field R of rational functions
r(x1, x2, . . . , xN ) = f(x1, x2, . . . , xN )/g(x1, x2, . . . , xN ), where f and g are
elements Fq[x1, x2, . . . , xN ]. Formal variables xα and governing linear ex-
pressions l(xα1 , xα2 , . . . , xαn , xα), where α is not a simple root are elements
of subring Fq[x1, x2, . . . , xN ] in R. During its work Tits automaton newer
use division. So after getting accepting state over R we got the vector of
dimension N with polynomial components fα. So the numerical encryption
map is regular automorphism of Fq

N (element of Cremona group for Fq
N )

of kind.
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xi → fi(x1, x2, . . . , xN ), i = 1, 2, . . . , N

Special choice of symbolic key guarantee that the above transformation is
bijective. Symbol ∞ play just formal role. Linearity of governing functions
leads to rather small degree of the nonlinear map.
Such a walk produces a bijective transformation T of variety Sch(G)

which is its regular automorphism ( polynomial map of the variety into
itself such that its inverse is also polynomial). We will conjugate T by
invertible affine transformation τ ∈ AGLN (Fq) and use Y = τ−1Tτ as the
instrument for the key exchange based in modified Diffie - Hellman method.
So the Alice is computing a standard form for Y

t1 = f1(t1, t2, . . . , tN ), t2 = f2(t1, t2, . . . , tN ), . . . , tN = fN (t1, t2, . . . , tN ),

where fi ∈ Fq[t1, t2, . . . , tN ], i = 1, 2, . . . , N , and sending the map to Bob
via open communication channel. Correspondents Alice and Bob (as usu-
ally) are choosing their keys kA and kB , respectively. They are executing
computations DA = Y kA and DB = Y kB . They exchange the outputs via
the open channel.
Finally Alice and Bob are computing collision maps DB

kA) and DA
kB .

So correspondents are getting common element.
We can modify the above scheme:
Alice chooses the maximal flag F from the largest large Schubert cell

Sch(G) and sends it to Bob via open channel. Correspondence may use
common flag DA

kB(F ) = DB
kA(F ) as the key for their private key algo-

rithm.
The security of the above key exchange algorithm based on the complex-

ity of discrete logarithm problem for the Cremona group of variety Sch(G).
In case of finite field Fq this group coincides with the symmetric group
SqN . it is important that we use description of permutations in terms of
polynomial algebra. So related discrete logarithm problem is formulated in
terms of algebraic geometry.
Method allows various modification: we can use nonlinear invertible

maps instead of affine transformation τ , the base of discrete logarithm can
be non invertible polynomial map and etc. An interesting modifications can
be obtained if we will allow not bijective transformations of the variety. For
instance we may consider fractional linear governing function li for the step
i looks like (a1xα1 + a2xα2 + . . . aαnxαn)/(b1xα1 + b2xα2 + . . . bαnxαn) if the
root α on step i is simple, and li is a fraction of two linear combinations
of xαi , if α is not a simple root. In case of such governing functions we
refer to corresponding automata as birational Tits and Schubert automaton,
respectively.
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3.8.5. Embedding of the flag variety into the Lie Algebra and
some complexity estimates

Throughout this section (G,B,N, S) is a Tits system which arises in
connection with Chevalley group G, although we point that the results of
this section remain valid in a far more general setting (see [35],[20], [108]).
We write G = Xl(K) to signify that G is the Chevalley group over the field
K, with associated Dynkin diagram Xl. We are most interested in the case
when K is finite, and we shall write Xl(q) instead of Xl(Fq) in that case.
So, fix Chevalley group G = Xl(K) with corresponding Weyl group W .

As in the previous section ΓW and ΓG their associated Coxeter and Lie
geometries. Let L = H + L+ + L− be the Lie algebra corresponding to G.
Following convention, we refer toH, L+, L− andH+L+ as, respectively,

the Cartan subalgebras, positive root space, negative root space and Borel
subalgebra with respect to the given decomposition of L. We also use the
familiar bracket notation [, ] to indicate Lie product [16], [87],
Below we turn out our attention to a method of embedding ΓW and

ΓG in L. As the reader shall see, this method actually embeds ΓW in the
Cartan subalgebra H of L. Let us consider the embedding more precisely.
Let A = (ai,j) be the Cartan matrix corresponding to the root system

Ω of W . We consider the lattice R which is generated by simple roots
α1, α2, . . . , αl and the reflection r1, r2, . . . rl of R defined by the equality
(αi)

rj = αi − ai,jαj .
Let S = {r1, r2, . . . , rl} is the set of Coxeter generators of Weyl group

W . Let α1
∗, α2

∗, . . . , αl
∗ be a dual basis of α1, α2, . . . , αl, i.e. αi

∗ is the
linear functional on R which satisfies αi

∗(αj) = δi,j . We define the action
of W on the dual lattice R∗ by l(x)s = l(xs), where l(x) ∈ R∗ and s ∈ S.
Consider the orbit Hi = {w(αi

∗)|w ∈ W} of permutation group (W,R∗),
which contains αi

∗. Let H be the disjoint union of Hi. We give the set H
the structure of an incidence system as follows. Linear functionals l1(x)
and l2(x) are incident if and only if products l1(α)l2(α) ≥ 0 for all α ∈ Ω.
The type function t is defined by t(l(x)) = i where l(x) ∈ Hi. It can
be shown that (H, I, t) is isomorphic to Coxeter geometry ΓW . (In fact
there is a unique isomorphism of ΓW with (H, I, t) which sends Wi to αi,
1 ≤ i ≤ l.) This gives the desired embedding since H is a subset in R∗ and
R∗ ⊂ L0. Moreover this embedding still valid for a field K of sufficiently
large characteristic, since, in that case H is a subset of R×K = L0.
We now consider an analogous embedding of the Lie geometry ΓG into

the Borel subalgebra U = L0 +L+ of L. Let d = α1
∗ + α2

∗ + . . . αl
∗. Than

we can take Ω+ = α ∈ Ω|d(α) ≥ 0 to be our set of positive roots in Ω. For
any l(x) ∈ R∗ define η−(L) = α ∈ Ω+|l(α) < 0.
Let Lα be the root space corresponding to positive root α. For each



3.8. On Lie geometries their flag systems and applications in Coding Theory and

Cryptography 101

h ∈ H we define the subalgebra Lh as the sum of Lα, α ∈ η−(h). Let
Ui = {h+ v|h ∈ Hi, v ∈ Lh} and U is a disjoint union of Ui. We give U the
structure of an incident system as follows. Elements h1+ v1 and h2+ v2 are
incident if and only if each of the following hold:

(i) h1(α)h2(α) ≥ 0 for all α ∈ Ω, i.e. h1 and h2 are incident in (H, I, t).
(iii) [h1 + v1, h2 + v2] = 0

Element h+ v has type i if h+ v ∈ Ui.
In [105] it is shown that this newly defined incident system is isomorphic

to the Lie geometry ΓG, provided that the characteristic of K is zero or
sufficiently large to ensure the isomorphism at the level of the subgeometries
(H, I, t) and ΓW . Then analogous to the Weyl case, there exists a unique
isomorphism Retr of Γ(G) into (U, I, t) which sends Pi to αi, 1 ≤ i ≤ l.

Proposition 25. Let Γ = Γ(G) be the geometry of group G = Xn(q). The
above interpretation of Γ(G) allows

(i) generate Γ in O(|Γ|) elementary steps and check whether or not two
elements of Γ are incident for time O(N2), where N is the number of
positive roots.

(ii) complete the computation in Tits and Schubert automaton consisting
of k elementary steps for time O(kN)

Graphs of degree q and SF (Xn(q), q ≥ 4 of degree q − 1 have orders
|Xn(q)|/|B| and qN , respectively. They form families of small world graphs
depending on two parameters n and q.

3.8.6. On the discrete logarithm problem with polynomial or
birational base

Let Fp, where p is prime. be a finite field. Affine transformations
x → Ax + b, where A is invertible matrix and b ∈ (Fp)

n, form an affine
group AGLn(Fp) acting on Fp

n. It is known that polynomial transfor-
mation of kind x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . , xn →
gn(x1, x2, . . . , xn) form a symmetric group Spn .
In the simplest case Fp, affine transformations form an affine group

AGLn(Fp) of order (p
n − 1)(pn − p) . . . (pn − pn−1) in the symmetric group

Spn of order (p
n)!. In [76] the maximality of AGLn(Fp) in Spn was proven.

So we can present each permutation π as a composition of several ”seed”
maps of kind τ1gτ2, where τ1, τ2 ∈ AGLn(Fp) and g is a fixed map of degree
≥ 2. One may choose quadratic map of Imai - Matsumoto algorithm in case
p = 2 (see [53], [80] for its description and cryptanalysis by J. Patarin) or
graph based cubical maps [128] for general p.
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We can choose the base of Fp
n and write each permutation g ∈ Spn as a

”public rule”:

x1 → g1(x1, x2, . . . , xn),

x2 → g2(x1, x2, . . . , xn),

. . . ,

xn → gn(x1, x2, . . . , xn).

Let gk ∈ Spn be the new public rule obtained via iteration of g. Discrete
logarithm problem of finding solution for k for gk = b can be difficult if
the order of g is ”sufficiently large”. We have to avoid the linear growth of
the degree gk, when k is growing. Obvious bad example is the following: g
sends xi into xi

t for each i. In this case the solution is just a ratio of degb
and degg.
Let us consider the Cremona group C(n, q) of all invertible polynomial

automorphisms of the vector space Fq
n, where q = pm, the semigroups

PC(n, q) and BC(n, q) of polynomial and birational maps of Fq
n into itself,

respectively.
To avoid such trouble one can look at families of subgroups of increasing

orger Gn, n → ∞ of Spn such that maximal degree of its element equals
c, where c is independent constant (groups of degree c or groups of stable
degree). We refer to an element g such that all its nonidentical powers are
of degree c as element of stable degree.
It is clear that the family of affine subgroup AGLn(p) is a subgroup

of stable degree for c = 1 and all nonidentical affine transformations are of
stable degree. Notice that if g is a linear diagonalisable element of AGLn(p),
then discrete logarithm problem for base g is equivalent to the classical
number theoretical problem.
One can take a subgroup H of AGLn(p) and consider its conjugation

with nonlinear bijective polynomial map f . Of course the group H ′ =
f−1Hf will be also a stable group, but for most pairs f and H group H ′

will be of degree degf × degf−1 ≥ 4 because of nonlinearity f and f−1. So
the problem of construction an infinite families of subgroups Gn in Sn

p of
degree 2 and 3 may attract some attention.
The following questions are important because of Diffie Hellman type

protocols (see [25]).
Q1; How to construct stable subgroups C of small degree c (c = 2 and

c = 3 especially) of increasing order in C(n, q)?
We say refer to a semigroup Se generated by single elements as mono-

genetic semigroup of order |Se|.
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Q2; How to construct stable monogenetical subsemigroups in PC(n, q)
and BC(n, q) of small degree c (c = 2 and c = 3 especially) of increasing
order in C(n, q) of large order?
Finally, we announce the following statement

Theorem 19. Let Xn(F ), n ≥ 2 be a simple group of Lie type over the
field F . Let L(Xn(q) be a group of all invertible computations in Schubert
automaton.
In case of classical groups (diagrams An, Bn, Cn and Dn) groups

L(Xn(F )), n → ∞ form families of stable degree.
Remark. Groups L(Xn(F )) are of degree 3 in case of diagram Bn, Cn

and Dn, and L(An(F )) are groups of degree 2.

We can demonstrate the existence of elements in L(Xn(q)) of rather large
order. Really, take a permutation i1, i2, . . . , in on the nodes of Dynkin dia-
gram and compute a composition g of generators Zi1(l1(x)), Z

i2(l2(x)), . . .
Zin(ln(x)), where li(x) are linear forms corresponding to the rows of

Singer cycle matrix of order qn − 1 (see, for instance, [36]). As it follows
from the description of algorithm the order of g will be at least qn − 1.
Similarly we can use Singer cycle to generate by Tits automata a stable

monogenetic subgroup in PC(n, q) and BC(n, q).
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automata and optimistion problems

4.1. Directed graphs and related automata

The missing theoretical definitions on directed graphs the reader can
find on [114]. Let Φ be an irreflexive binary relation over the set V , i.e.
Φ ∈ V × V and for each v pair (v, v) is not the element of Φ.
We say that u is the neighbour of v and write v → u if (v, u) ∈ Φ. We

use term balanced binary relation graph for the graph Γ of irreflexive binary
relation φ over finite set V such that for each v ∈ V sets {x|(x, v) ∈ φ} and
{x|(v, x) ∈ φ} have same cardinality. It is a directed graph without loops
and multiple edges. We say that graph Γ is k-regular if for each vertex v ∈ Γ
the cardinality of {x|(v, x) ∈ φ} is k.
Let Γ be the graph of binary relation. The pass between vertices a and b

is the sequence a = x0 → x1 → . . . xs = b of length s, where xi, i = 0, 1, . . . s
are distinct vertices.
We say that the pair of passes a = x0 → x1 → · · · → xs = b, s ≥ 1 and

a = y0 → y1 → · · · → yt = b, t ≥ 1 form an (s, t)- commutative diagram
Os,t if xi 6= yj for 0 < i < s, 0 < j < t. Without loss of generality we
assume that s ≥ t.
We refer to the number max(s, t) as the rank of Os,t. It is ≥ 2, because

the graph does not contain multiple edges.
Notice, that the graph of antireflexive binary relation may have a di-

rected cycle Os = Os,0: v0 → v1 → . . . vs−1 → v0, where vi, i = 0, 1, . . . , s−
1, s ≥ 2 are distinct vertices.
We will count directed cycles as commutative diagrams.
For the investigation of commutative diagrams we introduce girth in-

dicator gi, which is the minimal value for max(s, t) for parameters s, t of
commutative diagram Os,t, s + t ≥ 3. Notice, that two vertices v and u at
distance < gi are connected by unique pass from u to v of length < gi.
In case of symmetric binary relation gi = d implies that the girth of the

graph is 2d or 2d − 1. it does not contain even cycle 2d − 2. In general
case gi = d implies that g ≥ d + 1. So if the case of family of graphs with
unbounded girth indicator, the girth is also is unbounded. We have also
gi ≥ g/2.
We assume that the girth g(Γ) of directed graph Γ with the girth indi-

cator d+1 is 2d+1 if it contains commutative diagram Od+1,d. If there are
no such diagrams we assume that g(Γ) is 2d+ 2.
In the case of symmetric irreflexive relations the above general definition

of the girth agrees with the standard definition of the girth of simple graph
i.e the length of its minimal cycle.
We will use term the family of graphs of large girth for the family of

regular graphs Γi of degree ki and order vi such that gi(Γi) is ≥ clogkivi,
where c′ is the independent of i constant.
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As it follows from the definition g(Γi) ≥ c′logki(vi) for appropriate con-
stant c′. So, it agrees with the well known definition for simple graphs.

4.1.1. Algebraic Graphs with special colouring of edges, general
algorithm

We shall use term the family of algebraic graphs for the family of graphs
Γ(K), K belongs to some infinite class F of commutative rings, such that
the neighbourhood of each vertex of Γ(K) and the vertex set itself are
quasiprojective varieties over K of dimension ≥ 1 (see [7] for the case of
simple graphs).
Such a family can be treated as special Turing machine with the internal

and external alphabet K.
We say that the graph Γ of binary relation Φ has a rainbow-like colouring

ρ of edges over the set of colours C if for each arrow (u, v) of the graph
((u, v) ∈ Φ) the colour ρ(u, v) ∈ C is defined and the following properties
hold:
(i) For each pair (u, c) such that u is a vertex and c ∈ C there is a unique

vertex v = Nc(u) satisfying condition ρ(u, v) = c.
(ii) For each pair (v, c) such that v is a vertex and c ∈ C there is a

unique vertex u′ = Nc(v) satisfying condition ρ(u, v) = c.
We have N ′

c(Nc(u)) = u. So operators N and N ′ are bijections on the
set of vertices of Γ.
Let us consider the encryption algorithm corresponding to the graph Γ

with the chosen invertible rainbow like colouring of edges.
Let ρ(u, v) be the colour of arrow u → v. The set C is the totality of

colours and Nc(u) is the operator of taking the neighbour of u with the
colour c.
The password is the string of colours key = (c1, c2, . . . , cs) and the en-

cryption procedure is the composition Nc1 × Nc2 . . . Ncs of bijective maps
Nci : V (Γ) → V (Γ) . So if the plaintext v ∈ V (Γ) is given, then the
encryption procedure corresponds to the following chain in the graph: x0 =
v → x1 = Nc1(x0) → x2 = Nc2(x1) → · · · → xs = Ncs(xs−1) = u. The
vertex u is the ciphertext.
The decryption procedure corresponds to the composition of maps N ′

c′s
,

N ′
c′s−1
, . . . , N ′

c′1
. The above scheme gives a symmetric encryption algorithm

with flexible length of the password (key). Let A(Γ, ρ) be the above encryp-
tion scheme. The following statement is immediate corollary from defini-
tions.

Lemma 16. Let Γ be the invertible rainbow-like graph of girth g and
A = A(Γ, ρ) be the above encryption scheme with the length of password s,
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1, s < (gi). Then different passwords produce distinct ciphertexts, plaintext
and corresponding ciphertext are different.

Let |C| ≥ 3 is finite. For the encryption algorithm A depending on the
key key from the keyspace we consider the constants dk = dk(A) which is the
minimal number of different ciphertexts obtained from the same plaintext
by application of all passwords from the keyspace (coefficient of direct key
impact).
Let mk(A) be the cardinality of the minimal set containing all vertices

which one can obtained from some vertex v by the compositions of the
encryption transformations in A(Γ, ρ). If the graph Γ is strongly connected
then mk(A) is the minimal size of the connected component in Γ.
For the Turing machine T of block-cipher working with potentially in-

finite text both coefficients dk(T ) and mk(T ) are bounded by the size of
block.
We say that the graph of binary relation is k-regular if each vertex has

exactly k inputs and k outputs
Let Γn, n = 1, 2, . . . be an infinite family of rainbow-like kn-regular

graphs (kn ≥ 3) with the increasing girth indicator gin. Let us consider
the Turing machine A corresponding to the sequence of An = A(Γn, ρn),
n = 1, 2, . . . , It is clear that dk(An) is the sum of k(k − 1)si , si ≤ gin. So
this is unbounded function and the Turing machine is not a block cipher.
Notice that for simple k-regular graphs Γn of the girth gn and order

vn, k ≥ 3 and n = 1, 2, . . . the parameter dk(n) = dk(An) is the minimal
number of vertices at a distance d, 1 < d ≤ gn from the chosen vertex. The
fastest possible grow of dk(n) will be in case of the family of graphs of large
girth when gi ≥ clog(vi) for the constant 0 < c < 2 (see [8]). Parameter
mk(n) = mk(An) is the minimal order of the connected component of Γn.
If each Γn is connected then mk(n) = vn.
The fastest possible grow of mk(n) will be in the case of small world

graphs i.e graphs with the diameter O(logk−1(vn)) (see [12]).
We will use term the folder of graphs for the family Γn of k-regular

rainbow-like graphs for which there is a colour preserving graph homomor-
phism from Γn onto Γn−1. For such a family there is well define projective
limit which is an infinite k-regular graph. It corresponds to graph based
Turing machine. In case of the folder of connected k-regular graphs of in-
creasing girth the projective limit is k-regular tree. The example of a folder
has been considered in the section 5.
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GENERAL ALGORITHM.

Let us assume that all members of the above family Γn of raibow like
graphs over the set of colours Cn are strongly connected algebraic graphs
over the commutative ring K (finite or infinite) and the vertex set Vn(K)
is an open variety in Zarissky topology. Let us chose to biregular automor-
phisms τ1 and τ2 i.e. polynomial bijections on Vn(K) such that their inverses
are polynomial maps also. Let fi, 1 ≤ i ≤ m(n) be the sequence of functions
which are invariant on connected components of Γn: for v and u from the
same connected component and each i we have fi(u) = fi(v). Let v be the
vertex of Γn (the plaintext. We can take the symbolic key (F1, F2, . . . , Fl(n)),
l(n) ≤ gin formed by elements of K[y1, . . . , ym(n)], compute the numer-
ical key k = (k1, k2, . . . , kl(n)), where ki = Fi(f1(v), f2(v), . . . , fm(n)(v)),
i = 1, 2, . . . , l(n), create the transformation Tk = Nk1 ×Nk2 × . . . Nl(n) and
take the composition E(τ1, τ2, F1, F2, . . . Fl(n)) of τ1, Tk and τ2 as encryption
map on Vn(K).

4.1.2. Some examples

Example 1: Cayley graphs

Let G be the group and S be subset of distinct generators, then the
binary relation φ = {(g1, g2)|gi ∈ G, i = 1, 2, g1g2

−1 ∈ S: admit the rainbow
like colouring ρ(g1, g2) = g1g2

−1

This rainbow like colouring is invertible because the inverse graph φ−1 =
{(g2, g1)|g1g2−1 ∈ S} admit the rainbow-like colouring ρ′

(g2, g1) = g2g1
−1 ∈

S−1.
The first explicit examples of families with large girth were given by

Margulis [69], with for some infinite families with arbitrary large valency.
The constructions were Cayley graphs Xp,q of group SL2(Zq) with respect
to special sets of p + 1 generators, p and q are primes congruent to 1
mod4. Then independently Margulis and Lubotsky, Phillips, and Sarnak
[56] proved that for each p the constant γ for graphs Xp,q with fixed p is
≥ 4/3. Later on Biggs and Boshier showed that this γ is asymptotically
4/3.
The family of Xp,q is not a family of algebraic graphs because the neigh-

bourhood of each vertex is not an algebraic variety over Fq. For each p,
graphs Xp,q, where q is running via appropriate primes, form a family of
small world graph of unbounded diameter. We give a brief outline of the
explicit construction of of a class of Cayley graphs called the Ramanujan
Graph X(p, q) due to Lubotzky, Phillips and Sarnak [66].



110
4. On the directed graphs without commutative diagrams, related encryption

automata and optimistion problems

Let p and q be primes, p ≡ q ≡ 1(mod 4). Suppose that i be an integer so
that i2 ≡ −1(mod q). By a classical formula of Jacobi, we know that there
are 8 ∗ (p+ 1) solutions α = (a0, a1, a2, a3) such that a

2
0 + a21 + a22 + a23 = p.

Among these, there are exactly p+1 with a0 > 0 and a0 odd and aj even for
j ∈ {1, 2, 3}, as is easily shown. To each such α we associate the matrix

α̃ =
(

a0 + ia1 a2 + ia3−a2 + ia3 a0 − ia1

)

which gives us p+ 1 matrices in PGL2(Fq). We let S be the set generators
of these matrices α̃ and take PGL2(Fq). In [6], it is shown that the Cayley
graphs X(p, q) will be a (p + 1)-regular graph, namely the Cayley graph

of PSL2(Fq) if
(

p
q

)

= 1 and PGL2(Fq) if
(

p
q

)

= −1, (where
(

p
q

)

is the

Legendre symbol). As we vary q, we get an infinite family of such graphs,
all p+ 1-regular.
Moreover, in papers written by Lubotzky, Phillips and Sarnak [6], an

explicit formula for the girth g(X(p, q)) of X(p, q) was found.

Corollary 7 (6). Following cases draw ahead:

(1) If
(

p
q

)

= −1 then X(p, q) is bipartitle of order n = |X(p, q)| =

q(q2 − 1) and

g(X(p, q) ≥ 4 logp q − logp 4

(2) If
(

p
q

)

= 1 then X(p, q) is not bipartitle, n = |X(p, q)| = q(q2− 1)/2

and
g(X(p, q) ≥ 4 logp q.

Above the Corollary 1 shows that the Ramanujan graph X(p, q) of order
n which asymptotically satisfies g(X(p, q)) ≥ 4 logk−1 n/3.
Here we can use the Ramanujan graphs to generating of matrices with

large order. The algorithm is:

Algorithm 1. Let X(p, q) be the Ramanujan graphs. Then
(1) Take the product

g = si1si2 . . . sik , (k − small, sij ∈ S, j = 1, . . . , k)

and si1 6= s−1
ik
. (We can chose the sequence si1si2 . . . sik in a way that g

is not similar to diagonal matrix or matrix of kind
(

1 0
α 1

)

)
(2) Then the order |g| of g is such that

|g| ≥ g (X (p, q))

k
,

where (g (X (p, q))-girth of the Ramanujan graph X (p, q)).
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Remark. The girth of the Ramanujan graph X (p, q) is unbounded (p
is fixed, q → ∞). So we can choose a large q to make |g| as large as we
want.
Troubleshooting for Xp,q:
1) For work with large plaintext we need large prime number, so real

option to work with large texts is restricted.
2) As we write before, the important feature of general graph based

encryption is the resistance to attacks, when adversary intercepts the pair
plaintext - ciphertext, because the best algorithm of finding the pass be-
tween given vertices (by Dijkstra, see [26] and latest modifications) has
complexity vlnv where v is the order of the graph, i.e. size of the plainspace.
But in case of concrete family of graphs one can find a way to compute key
faster. The class of Cayley graphs gives us clear example:
Let us assume that Γ is large Cayley graph corresponding to group G

and the set of generators S. Let the password is determined by sequence
of generators s1, s2, . . . sk, the plaintext is g ∈ G and the corresponding
ciphertext is h ∈ G. Let us assume that adversary has the pair (g, h).
The problem of getting the sequence s1, . . . , sk can be difficult, but the
adversary can compute element l = g−1h and use its inverse to control the
communication channel under the condition that correspondents are not
changing the password. Really, c = l−1p.
To prevent such trouble the correspondences can modify such encryption

scheme by ”hiding the graphs up to isomorphism”, i.e. instead of the se-
quence of k-regular (k is fixed) graphs Γi they can take the graphs of binary
relations πi(Γi) = {(u, v)|(πi(v), πi(u)) ∈ Γ}, where πi be some bijection on
V (Γi). It is clear that parameters dk, mk) and the girth are same for graphs
πi(Γ)i) and Γi are different. It is important to take sparse πi, which can
be computed for linear time, do not slow down the computation seriously.
Experiment show that the mixing properties of algorithms corresponding
πi(Γi)) and Γi can be very different.
P.Luks estimated that the complexity of mass problem of finding isomor-

phism between k-regular Γi and πi(Γi) is polynomial expression in variable
vi = |V (Γi)| which is the size of the plainspace. So encryption algorithm for
πi(X

p,q) may have very good resistance to attack of type (ii). Notice that
here we are treating πi as a part of password.

Example 2: Parallelotopic graphs and latin squares

Let G be the graph with the colouring µ : V (G) → C of the set of vertices
V (G) into colours from C such that the neighbourhood of each vertex looks
like rainbow, i.e. consists of |C| vertices of different colours. In case of pair
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(G,µ) we shall refer to G as parallelotopic graph with the local projection
µ.
It is obvious that parallelotopic graphs are k-regular with k = |C|. If

C ′ is a subset of C, then induced subgraph GC′

of G which consists of all
vertices with colours from C ′ is also a parallelotopic graph. It is clear that
connected component of the parallelotopic graph is also a parallelotopic
graph.
The arc of the graph G is a sequence of vertices v1, . . . , vk such that

viIvi+1 for i = 1, . . . , k − 1 and vi 6= vi+2 for i = 1, . . . , k − 2. If v1, . . . , vk
is an arc of the parallelotopic graph (G,µ) then µ(vi) 6= µ(vi+2) for i =
1, . . . , k − 2.
Various examples of simple parallelotopic graphs have been considered

in previous section. The implementation for algorithm based on different
from φ(n) family of graphs of large girth is discussed in [113].
Let + be the latin square defined on the set of colours C. Let us assume

ρ(u, v) = µ(u) − µ(v). The operator Nc(u) of taking the neighbour of the
color is invertible, Nc

−1 = N−c, where −c is the opposite for c element in
the latin square. It means that ρ is invertible rainbow like colouring.

4.2. On extremal graph theory for balansed directed graphs

Recall that according to the Bourbaki the graph (or directed graph) is
the pair V (vertex set) and subset φ in the Cartesian product V × V . We
refer to element v ∈ V as vertex ( state in automata theory).
We use term arc (or arrow as in automata theory) for the element (a, b) ∈

Φ. We refer to (a, b) ∈ Φ as arc (arrow) from a to b, Element a and b are
starting and ending vertex of the arc (a, b). We say that (a, b) is output of
vertex a and b is input of b. As it follows from above definition graph has
no multiple arcs.
The cardinalities of V and Φ are the order and size of the graph, respec-

tively.
Graph is simple if Φ is symmetric and antireflexive relation. The infor-

mation about simple graph can be given by edge i. e. set of kind {a, b},
where (a, b) is an arc. Graphically simple graph has no loops and multiple
edges. In case of simple graph term size used for the number of edges within
the graph.
The classical extremal graph theory studies extremal properties of simple

graphs. Let F be family of graphs none of which is isomorphic to a subgraph
of the graph Γ. In this case we say that Γ is F -free. Let P be certain graph
theoretical property. By exP (v, F ) we denote the greatest number of edges
of F -free graph on v-vertices, which satisfies property P . If P is just a
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property to be simple graph we omit index P and write ex(v, F ). The
missing definitions in extremal graph theory the reader can find in [11].
This theory contains several important results on ex(v, F ), where F is

a finite collection of cycles of different length [11], [28], [91]. The following
statement had been formulated by P. Erdös’.
Let Cn denote the cycle of length n. Then

ex(v,C2k) ≤ Cv1+1/k (4.1)

where C is independent positive constant.
For the proof of this result and its generalisations see [13], [29].
In [6] the upper bound

ex(v,C3, C4, . . . , C2k, C2k+1) ≤ (1/2)1+1/kv1+1/k +O(V ) (4.2)

had been established for all integers k ≥ 1.
Both bounds are known to be sharp for k = 2, 3, 5 in other cases the

question on the sharpness is open (see [3], [11] and further references).
The girth of the simple graph is the minimal length of its cycle. So the

above bound is the restriction on the size of the graph on v vertices of girth
≥ n. Graphs of high girth, i.e. graphs which size is close to the above upper
bounds can be used in Networking and Operation Research (see [11]) and
Cryptography.
The generalisations of classical extremal graph theory on directed graphs

require certain restrictions on inputs or outputs of the graph. Really, the
graph: P ∪ L = V , |P ∩ L| = 0, |V | = v, |P | = |L|, Φ = P × L of order
O(v2) has no directed cycles or commutative diagrams.
In current section we generalise the above results on maximal size on

the case of balanced graphs, when binary relation Φ is irreflexive and for
each vertex a ∈ V cardinalities of id(v) = {x ∈ V |(a, x) ∈ φ} and od(v) =
{x ∈ V |(x, a) ∈ φ} are same. We refer to numbers id(v) and od(v) as input
degree and output degree of vertex v in the graph, respectively (see section
7, where the pass, commutative diagram and the concept of girth indicator
is defined0.
Let F be a list of directed graphs and P be some graph theoretical

property. By ExP (v, F ) we denote the greatest number of arrows of F -free
directed graph on v vertices satisfying to property P (graph without sub-
graphs isomorphic to graph from F ).
Let EP = EP (d, v) = ExP (v,Os,t, s + t ≥ 3|2 ≤ s ≤ d) be the maximal

size (number of arrows) of the balanced binary relation graphs with the
girth indicator > d.
The main result of [108] is the following statement. If B be the property

to be the balanced directed graph, then
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v1+1/d −O(v) ≤ EB(d, v) ≤ v1+1/d +O(v) (4.3)

Notice, that the size of symmetric irreflexive relation is the double of the
size of corresponding simple graph. because undirected edge of the simple
graph corresponds to two arrows (arcs) of O2,0. We will consider further
the balanced graphs only and omit the index B.
If P is the property to be a graph of symmetric irreflexive relation then

ExP (v,Os,t, s + t ≥ 3|2 ≤ s ≤ d) = 2ex(v,C3, . . . , C2d−1, C2d) because
undirected edge of the simple graph corresponds to two arrows of O2,0. So
equality (1, 3) implies the following inequality

ex(v,C3, C4, . . . , C2k) ≤ (1/2)v1+1/k +O(V ) (4.4)

We evaluate the maximal size of the directed graph of order v with the
girth indicator > d which does not contain commutative diagrams Od+1,d,
as well. The inequality (4.2) is the corollary from such evaluation.
We can see that studies of extremal properties of balanced graphs with

the high girth indicator and studies of ex(v,C3, . . . , Cn) are far from being
equivalent. Really, the sharpness of the Erdös’ bound (4.1) and bounds (4.2)
and (4.4) up to magnitude for k = 8 and k ≥ 12 are old open questions (see
[3], [11]).
The family of directed graphs Gi, i = 1, . . . with average output degree

ki and order vi is the family of large girth if the girth indicator of Gi is
≥ logki(v). It agrees well with the standard definition for simple graphs. In
case of balanced graphs of large girth their size is close to the upper bounds
(4. 3).

4.2.1. On the upper bounds for size of the graphs with high
girth indicator

Let Γ be the graph of irreflexive binary relation Φ on the vertex st V
and the following property P holds:
for each vertex v ∈ V the cardinalities {x|(x, v) ∈ Φ} and {x|(v, x) ∈

Φ} equals to same number kv. As it follows from P the cardinality of

{(x, y, z)|(x, y) ∈ Φ and (y, z) ∈ Φ} is D =
∑

v∈V

(kv
2). So the number of

random walk with two arrows from random vertex v is D/v. Any random
walk in this graph can be viewed as the branching process with

√

(D/v)
branches from each node.
The bound E(d, v) ≤ v1+1/d + O(v) is based on the studies of such

branching process corresponding to the passes of length ≤ d of the rooted
tree. The definitions of such branching process, expectation operator and
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the confidence interval the reader can find in the book [50] by Karlin and
Taylor.

Theorem 20.
E(d, v) ≤ v1+1/d + o(v1+1/d) (4.5)

Ex(v,Od+1,d, Os,t|3 ≤ s ≤ d) ≤ (1/2)1/dv1+1/d + o(v1+1/d) (4.6)

For the demonstration of the justification technique of the upper bound
for directed graphs we prove more general statement in the next section
(upper bound for the size of directed graphs with large hooves)
In the next unit we show that the bounds of previous theorem are sharp.
It indicates that studies of extremal properties of graphs of binary rela-

tions with the high girth indicator and studies of ex(v,C3, . . . , Cn) are far
from being equivalent. Really, the sharpness of the Erdös’ bound for k = 4
and k ≥ 6 are old open questions.

4.2.2. On the sharpness of the bound

The diameter is the minimal length d of the shortest directed pass a =
x0 → x1 → x2 · · · → xd between two vertices a and b of the directed graph.
We will say that graph is k-regular, if each vertex of G has exactly k outputs.
Let F be the infinite family of ki regular graphs Gi of order vi and diameter
di. We say, that F is a family of small world graphs if di ≤ Clogki(vi),
i = 1, . . . for some independent on i constant C. The definition of simple
small world graphs and related explicit constructions the reader can find in
chapter 2, where some examples of small world graphs without small cycles
are given.
Let M be a finite set, m = |M | ≥ 2. We define Mk, m ≥ k + 2 as

the totality of tuples (x1, x2, . . . , xk) ∈ Mk, such that xi 6= xj for each pair
(i, j) ∈ {1, . . . , k}. Let us consider the binary relation φ = φk(m) on Mk

consisting of all pairs of tuples ((x1, . . . , xm), (y1, . . . , ym)), such that yi =
xi+1 for i = 1, . . . , k − 1 and ym 6= xi for each i ∈ {1, . . . , k}. The corre-
sponding directed graph Γ = Γi(m) has order m(m−1) . . . (m−k+1), each
vertex has m− k input and output arrows.

Theorem 21. The girth indicator and diameter of the graph Γk(m) is k+1
and 2k, respectively.

Proof. Let us consider the Os,t, 0 ≤ t ≤ s ≤ k, s ≥ 1 of the graph Γk(m)
with the starting point a = (a1, a2, . . . , ak). Let ax = (a2, a3, . . . , ak, x) be
the neighbour of a within the pass Px of the diagram of length s. Notice
that x is different from ai, i = 1, 2, . . . , k. Let P be other pass of the
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diagram. If length t of P is zero, we assume that P consist of one vertex a.
The first component of ending point w of the Px equals to x. But the first
component of each vertex for each vertex of the pass P is either element of
{a1, a2, . . . , ak} (case t < s or element y, y 6= x (case t = s). But w has
to be the vertex of P as well. So we are getting a contradiction. Thus, we
proved that the girth indicator of the graph is > k.
Notice that w = (x, x1, . . . , xk−1), where x 6= ai, i = 1, . . . , k, xi 6= aj ,

j = i+ 1, i + 2, . . . , k. We can add vertex (x1, x2, . . . , xk1 , xk), consider the
following specialization of variables xi = ai for i = 1, 2, . . . , k and obtain
the diagram O′

0,k+1. So the girth indicator of the graph is k + 1.
Let us consider the pass of length 2k starting from a and going throw w

and (x1, x2, . . . , xk) as above. It contains the following tuples (x2, . . . , xk, y1),
(x3, . . . , xk, y1, y2), . . . , (xk, y1, . . . , yk−1. The only requirement on distinct
elements xk, y1, . . . , yk is xk nex and x can be arbitrarily element from the
complement of {a1, . . . , ak}. If m ≥ k+2, then arbitrary point ofMk can be
reached from a via the pass as above and diameter of the graph is bounded
by 2k. It is clear that there is no pass of length 2k−1 between a and element
of kind (z1, . . . , zk−1, ak). So diam(Γk(m)) = 2m.

Corollary 8. Let F be the family of graphs Γm(k), m = k + 2, k + 3, . . . .
Then it is a family of directed small world graphs, the size of the members
of this family is on the bound (4.1) of theorem 1.

Really, Γm(k) has degree m− k, order v = m(m− 1) . . . (m− k+1). So
logm−k(v) is some constant > k. So diameter of graphs from the family is
bounded by 2logm−k(v). The size of Γm(k) is v(m− k). We have (m)k ≥ v.
So E(Γm(k)) ≥ v[(v1/k)− k] = v1+1/k − kv.
Let us consider the bipartite analog Γ′ = Γ′

k(m) of the graph Γ = Γk(m)
Let M be a finite set, m = |M | ≥ 2. Let P (point set) and L (line set) are
two copies of the vertex set Mk, m ≥ k+ 2 of the graph Γ. We will use the
brackets and parenthesis for the tuples from P and L, respectively.
LetΓ′ = Γ′

k(m) be the graph of binary relation on P ∪ L consisting of
all pairs of tuples ((x1, . . . , xm), [y1, . . . , ym]) or ([x1, . . . , xm], (y1, . . . , ym)),
such that yi = xi+1 for i = 1, . . . , k− 1 and ym 6= xi for each i ∈ {1, . . . , k}.
The corresponding directed graph Γ′ = Γ′

k(m) has order 2m(m−1) . . . (m−
k + 1), each vertex has m− k input and output arrows.

Theorem 22. The girth indicator and diameter of the graph Γ′
k(m) is k+1

and 2k = 1, respectively. The graph does not contain commutative diagram
Ok+1,k.

Proof. The graph does not contain Ok+1,k because of the ending point of
the diagram can not be point and line at same time.The evaluation of the
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girth indicator and diameter can be done similarly to the evaluation in the
proof of proposition 1.

Corollary 9. Let F ′ be the family of graphs Γ′
m(k), m = k + 2, k + 3, . . . .

Then it is a family of directed small world graphs, the size of the members
of this family is on the bound (4.2) of theorem 1.

Really, Γ′
m(k) has degree m−k and order v = 2m(m−1) . . . (m−k+1).

We have (m − k)k ≤ m(m − 1) . . . (m − k + 1). So k ≤ logm−k(m(m −
1) . . . (m−k+1)). Thus 2k+1 < 3k ≤ 3logm−k(m(m−1) . . . (m−k+1)) <
3log2m(m− 1) . . . (m− k + 1) = 3logm−k(v)
The size of Γ′

m(k) is v(m− k). We have (m)k ≥ m(m− 1) . . . (m− k +
1) = v/2. So m > (1/2)kv1/k. Thus E(Γ′

m(k)) ≥ v[(1/2)1/kv1/k) − k] =
(1/2)1/kv1+1/k − kv.

4.2.3. Remarks on the applications of graphs of large girth to
Coding Theory

Low-density parity-check (LDPC) codes were originally introduced in
doctoral thesis by Gallager [41] in 1961. The discovery of Turbo codes by
Berrou, Glavieux, and Thitimajshima [5] in 1993, and the rediscovery of
LDPC codes by Mackay and Neal [67] in 1995 renewed interest in Turbo
codes and LDPC codes, because their error rate performance approaches
asymptotically the Shannon limit. Much research is devoted to character-
izing the performance of LDPC codes and designing codes that have good
performance.
Commonly, the Tanner graph (see [94] and further references), is associ-

ated with the code and an important parameter affecting the performance
of the code is the girth of corresponding Tanner graph. The design of
structured regular LDPC codes whose Tanner graphs have large girth is
considered in [45, 46, 77]. The regularity and structure of LDPC codes utilize
memory more efficiently and simplify the implementation of LDPC coders.
The Tanner graph is simple bipartite graph, in which the set of nodes is
divided into two disjoint classes with edges only between nodes in the two
different classes. The first such codes corresponds to finite generalised poly-
gons) introduced by J. Tits [96] (see also well known paper [30]). Modern
studies of generalised polygons are reflected in [95]. The graphs D(n, Fq)
have been used in [45], [46]. The impotence of the studies of undirected
regular bipartite graphs with large girth for the design of turbo codes is
discussed in [31].
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Large girth speeds the convergence of iterative decoding and improves
the performance of LDPC codes, at least in the high SNR range. Large size
of such graphs implies fast convergence.
The concept of directed graph (finite automaton) could be used also in

Quantum Coding Theory [1].

4.3. On directed graphs with large hooves

We will consider graphs of binary relations, for which the number of in-
puts (or outputs alternatively) for each vertex is ≥ 1. The commutative dia-
gram is formed by two directed passes for which the same starting and end-
ing points form the full list of common vertices. If the lengthes of these pases
are equal t we use term horseshoe of size t and denote the diagram by Hst
We define the hoof size h = h(G) ≥ 2 of the directed graph G as the minimal
size of its horseshoe. We compute the maximal size Ex(Hs2,Hs3, . . . ,Hsd, v)
(number of arrows) for the directed graph on v vertices with the size of hoof
is > d (Hs2,Hs3, . . . ,Hsd is the list of prohibited subgraphs for the graph).
The computation is based on the combinatorial upper bounds and explicit
construction of the family of small world graphs with the increasing size
of the hooves. We prove that Ex(Hs2,Hs3, . . . ,Hsd, v) <=> v1+1/d. Notice
that last inequality implies that ex(C4, C6, . . . , C2d) ≤ 1/2v1+1/d+o(v1+1/d).
In the next section we observe classical results on Turan type problems

on studies of the maximal size of simple graphs without prohibited cycles.
Such problems were attractive for mathematicians because they are beau-
tiful and difficult. Later the applications of these problems in Networking
[6], Coding Theory and Cryptography were found.
We also discuss analogues of such problems for directed graphs without

loops and multiple edges and formulate some results on the maximal size
of digraphs without certain commutative diagrams, motivated by studies of
turbo-codes and encryption algorithms. we introduce the concept of girth
indicator here.
The definition of hoof size and the justification of equivalence

Ex(Hs2,Hs3, . . . ,Hsd, v) <=> v1+1/d

the reader can find in section 4.3.2.

4.3.1. On the extremal graphs and digraphs without certain
commutative diagrams

Classical Extremal Graph Theory developed by P. Erdös’ and his school
had been started with the following problem formulated by Turan.
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What is the maximal value ex(v,Cn) for the size (number of edges) of
graph on v vertices without cycles Cn of length n? (see [4], [27] and further
references). To discuss the behavior of function ex(v,Cn) for large variable
v we will use the following standard notations
Let f and g be two real valued functions on (a,∞).

1. f(x) <=> g(x), x → ∞ if f(x)/g(x) → 1 for x → ∞;
2. f(x) = o(g(x)), x → ∞ if f(x)/g(x) → 0 for x → ∞;
3. f(x) = O(g(x)), x → ∞ if there exist C and x0 such that |f(x)| <

C|g(x)| for all x > x0;
4. f(x) = Ω(g(x)), x → ∞ if there exist a c > 0 and a sequence x1, x2, · · · →

∞ such that |f(xi)| > c|g(xi)| for all i ≥ 1.

If n = 2k+1 is odd we can assume that v is even and take the complete
bipartite graph with the partition sets of same cardinality v/2. It contains
v2/4 vertices, so ex(v,C2k+1) = O(v2).
If n is even, then according to famous Erdös’ Even Circuit Theorem

ex(v,C2k) = O(v1+1/k). This proof was obtained by famous Erdös’ proba-
bilistic method. Recall that the upper bound of the theorem is known to be
sharp ex(v,C2k) = Ω(v1+1/k) for k = 2, 3 and 5 only (see [28], [29] for n = 2
and [3] for n = 3, 5). The equivalence ex(v,C4) <=> 1/2v3/2 was obtained
in [27] and [28]. The best lower bound ex(v,C6) ≥ 1/2v4/3 + o(v4/3) was
proved in [65]. The best known lower bound for the case n = 5 had been

obtained in [66]: ex(v,C10) ≥ 4/56/5v6/5.
The girth g(G) of the simple graph G is the length of its smallest cycle.
The studies of maximal size ex(v,C3, C4, . . . , Cn) for graph on v vertices

without cycles C3, C4, . . . , Cn, i.e. graphs of girth > n historically had been
motivated by their applications to Telephone Networking. As it follows from
Erdös’ Even Circuit Theorem ex(v,C3, C4, . . . , C2n) = O(v1+1/n).
More precise evaluations lead to the following bounds:

ex(v,C3, C4, . . . , C2k, C2k+1) ≤ (1/2)1+1/kv1+1/k + o(v1+1/k) (4.3.1)

ex(v,C3, C4, . . . , C2k) ≤ (1/2)v1+1/k + o(v1+1/k) (4.3.2)

The inequality (4.3.1) is established in [29] for all integers k ≥ 1. The
upper bound (1.2) can be obtained by similar probabilistic arguments (see,
for instance, [119] and remarks after Theorem 1 below). Similar to the case
of ex(v,C2n) both bounds (4.3.1) and (4.3.2) are known to be sharp up to

magnitude for n = 2, 3 and 5 only. The lower bound ex(v,C10) ≥ 4/56/5v6/5

above and inequality (4.3.2) imply that ex(v,C10) 6= ex(v,C3, C4, . . . , C10).
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It is an interesting question whether or not

ex(v,C6) 6= ex(v,C3, C4, C5, C6).

The first general lower bounds of kind

ex(v,C3, C4, . . . Cn) = Ω(v1+c/n) (4.3.3)

where c is some constant < 1/2 was obtained in 50th by famous Erdös’
via studies of families of graphs of large girth, i.e. infinite families of simple
regular graphs Γi of degree k and order vi such that the girth g(Γi) is
≥ clogkivi, where c is the independent of i constant. Erdös’ proved the
existence of such a family with arbitrary large but bounded degree k with
c = 1/4 by his famous probabilistic method.
Just several explicit families of graphs of large girth with unbounded

girth and arbitrarily large k are known: the family of Cayley graphs had
been defined in [69] and investigated in ([66], the family of algebraic graphs
defined in [62] and its modifications suggested in [119].
Some of them can be easily converted in special finite automata and used

for cryptographical purposes (see previous chapters on theoretical studies
and software implementations). Graphs D(n, q) and their directed ana-
logues can be used in Coding Theory as so called Tanner graphs.
Notice that ex(v,C2k) ≥ ex(v,C3, C4, . . . , C2k+1). The best known lower

bound for k 6= 2, 3, 5 was obtained in [63]:

ex(v,C3, C4, . . . , C2k+1) = Ω(v1+2/(3k−3+e)) (4.3.4)

where e = 0 if k is odd, and e = 1 if k is even.
It is known that finite automaton roughly is a directed graph (or shortly

digraph) with labels on arrows. So the Computer Science motivates the
development of Extremal Graph Theory for Directed Graphs, which can be
named alternatively as Extremal Digraph Theory. Last term is in the title
of the current note.
Let us observe some analogues of ex(v,C3, C4, . . . , Cn) for the special

class of directed graphs.
Previously we consider balanced graphs for which the number iv of inputs

x → v and number ov of outputs v → x are the same for each vertex v.
Recall that we use term the family of graphs of large girth for the family

of balanced directed regular graphs Γi of degree ki and order vi such that
gi(Γi) is ≥ clogkivi, where c

′ is the independent of i constant.
As it follows from the definition g(Γi) ≥ c′logki(vi) for appropriate con-

stant c′. So, it agrees with the well known definition for the case of simple
graphs.
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Let F be a list of directed graphs and P be some graph theoretical
property. By ExP (v, F ) we denote the greatest number of arrows of F -free
directed graph on v vertices satisfying property P (graph without subgraphs
isomorphic to graph from F ). We will omit the index P in this section if it
is just a property to be a balanced directed graph.
The maximal size E(d, v) (number of arrows) of the balanced binary

relation graphs with the girth indicator > d coincides with Ex(v,Os,t, s+t ≥
2 ≤ s ≤ d).
Let Ex2d+1(v)) be the maximal size of the balanced directed graph of

girth > 2d+ 1, then this number coincide with Ex(v,Od+1,d, Os,t): 3 ≤ s ≤
d).
The following analog of (4.3.1) has been stated previously.

E(d, v) <=> v1+1/d (4.3.5)

Remark 1. Let EP (d, v) be the maximal size (number of arrows) for
the balanced graph on v vertices with the girth indicator > d satisfying the
graph theoretical property P . If P is the property to be a graph of symmet-
ric irreflexive relation then EP (d, v) = 2ex(v,C3, . . . , C2d−1, C2d) because
undirected edge of the simple graph corresponds to two arrows of symmet-
ric balanced directed graph. So the bound (4.3.5) implies the inequality
(4.3.2).
Remark 2. The precise computation of E(d, v) does not provide the

sharpness of (4.3.2). So the questions on the sharpness of (4.3.1) and (4.3.2)
up to magnitude for n 6= 3, 4 and 5 are still open and the lower bound (4.3.5)
is still the best known.
The above Theorem is analog of bound (4.3,2) for balanced directed

graphs. The following analog of (4.3.1) was introduced previously.

Ex2d+1(v) <=> (1/2)1/dv1+1/d (4.3.6)

Remarks:
(i) Let E2d+1

P (v) be the maximal size (number of arrows) for the balanced
graph on v vertices with the girth > 2d+ 1 satisfying the graph theoretical
property P . If P is the property to be a graph of symmetric irreflexive rela-
tion then E2d+1

P (v) = 2ex(v,C3, . . . , C2d, C2d+1) because undirected edge of
the simple graph corresponds to two arrows of symmetric balanced directed
graph. So the above Theorem implies the inequality (4.3.1).
(ii) The sharpness of the bound (4.3.1) does not follow from the above

mentioned theorem. The function ex(v,C3, . . . , C2d, C2d+1) is computed up
to the magnitude for d = 2, 3, 5.
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4.3.2. On the graphs with large hooves

In this section we will consider graphs of binary relations, for which the
number of inputs (or outputs alternatively) for each vertex is ≥ 1. We
refer to the commutative diagram Os,t with s = t as horseshoe of size t
and denote it by Hst We define the hoof size h = h(G) ≥ 2 of the directed
graph G as the minimal size of its horseshoe. We shall study the maximal
size Ex(Hs2,Hs3, . . . ,Hsd, v) (number of arrows) for the graph on v vertices
with the size of hoof is > d . The sequence Hs2,Hs3, . . . ,Hsd is the list of
prohibited subgraphs for the graph

Theorem 23.

Ex(Hs2,Hs3, . . . ,Hsd, v) <=> v1+1/d (4.3.7).

The equality (4.3.1) follows instantly from the above statement.

Proof. let us take care on lower bound for E = Ex(Hs2,Hs3, . . . ,Hsd, v)
first. Let us fixe the parameter v. Number E is a maximal size of the graph
from the set T of all graphs with vertices of output degree ≥ 1, which do
not contain commutative diagrams O2,2, O3,3, . . . , Od,d. Extremal balanced
graph does not contain isolated points. So, E(d, v is a maximal size of the
graph from the set T ′ of balanced graphs with output degree ≥ 1, which
do not contain commutative diagrams Or,s with s ≤ r ≤ d. It means that
T ′ is a subset of T and E ≥ E(d, v) ≥ v1+1/d + o(v1+1/d) (look at theorem
1 from previous section) Let nw be the output degree of extremal graph G
from the set T . So E is the sum of all nw ∈ V (G). The ratio a = E/v
is an average output degree of vertex from V (G). As it follows from our
lower bound a ≥ v1/d. Let us consider the totality ∆ of all directed passes
of kind w1 → w2 → · · · → wd. Let ∆(w) be the totality of all passes with
the starting point w. The property “output degree of w is ≥ 1 implies that
∆(w is not an empty set. This property allow us to estimate size of ∆ from
below: |∆| ≥ vad − o(vad). There is a special vertex w∗, such that |∆(w∗)|
is ≥ a1/d because absence of such a vertex contradicts to our lower bound on
∆. Let us consider two different passes Pw and P

′
w from ∆(w∗) with ending

points w and w′ . Let S(Pw) and S(Pw′ be sets of internal vertices for each
pass (without w, w′ and v). If |S(Pw) ∩ S(Pw′)| = 0 then w 6= w′ because
of absence of diagrams Hsd. If |S(Pw) ∩ S(Pw′)| 6= 0 and w = w′ then the
induced subgraph on the set of vertices S(Pw) ∪ S(Pw′) ∪ {w∗, w} is union
of several commutative diagram Ori,si , i = 1, . . . , l with ri 6= si and several
common arrows a1, a2, . . . at . We assume that arrows of length ri belong to
one pass of length d and remaining arrows belong to other pass. We have
s1 + s2 + . . . ,+sl = r1 + r2+, · · · + rl, l ≥ 2. We can construct the pass P
from w∗ to w containing passes of length min(ri, si), i = 1, . . . , l and arrows
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a1, a2, . . . at The length of P is < d. The number of vertices at the distance
< d from w∗ is o(|∆|). It means that all ending points at distance d from
w∗ are different, the number N = N(v) of such points can be estimated as
|∆(w∗)| up to equivalence <=>. So, ad−o(v1/d) ≤ ∆(w∗) ≤ v, a <=> v1/d

and E <=> v1+1/d.

Remark. The condition that output (or input, alternatively) degrees
are ≥ 1 is important. Really, the graph with the vertex set V = P ∪ L
with the subdivision into point set P and line set L of same cardinality,
|P ∩ L| = 0, |V | is even number v, formed by all arrows from point to line
has order O(v2) and does not contain commutative diagrams.
Recall that ex(C4, C6, . . . , C2d) is the maximal size of simple graph on

v vertices without cycles of length 4, 6, . . . , 2d. It is well known that ex-
tremal simple graph G is connected. The corresponding directed graph of
symmetric binary relation contains twice more vertices and does not contain
Hs2,Hs4, . . . ,Hs2d. So, directly from previous theorem we get the following
known statement.

Corollary 10.

ex(C4, C6, . . . , C2d) ≤ 1/2v1+1/d + o(v1+1/d)

Remark We are not able to deduce the sharpness of the above upper
bound from theorem 3 because the explicit construction supporting sharp-
ness of the upper bound of Theorem 23 had been obtained via the family
of graphs of asymmetrical relations (see previous sections).

Proposition 26. ex(C4, C6, . . . , C2d) <=> 1/2v1+1/d for d = 2, 3 and 5.

Proof. The generalised m-gons had been defined by J. Tits as biregular
bipartite graphs of diameterm and girth 2m. So such graph does not contain
cycles of length 4, 6, . . . , 2m− 2. Let us assume that r -regular generalised
m-gon GPr(m) has a polarity automorphism π i.e.the symmetry of order 2
which maps set of points P onto set of lines L. Let I be the symmetric binary
relation (incidence) corresponding to such a graph. Then we may consider
the binary relation φ on the set P : (p1, p2) ∈ φ if and only if (p1, π(p2)) ∈
I. The new symmetric directed graph contains loops. Vertices with loops
corresponded to so called absolute points. We delete loops, consider new
symmetric binary relation I ′ and corresponding simple graph GH(m) to I ′

(the polarity graph for the generalised m-gon). The graph GH(m) contains
1+[(r−1)+(r−1)2+· · ·+(r−1)m−1 vertices The degree of absolute point is
r − 1 and degrees of remaining points are equal r. As it follows directly from
the definition even cycles for GH(m) and GPr(m) are same. The examples
of regular generalised m-gons are known for m = 3, 4 and 6 only.In fact,
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geometries of simple group of Lie type A2(q), B2(q) and G2(q) defined over
finite field Fq are generalised 2m-gons, respectively. Geometry Γ(A2(q)) of
group A2(q) (classical projective plane) admits the polarity for each finite
field Fq. Geometries Γ(B2(q)) and Γ(G2(q)) of simple groups B2(q) and
G2(q) have a polarity if and only if q = 22t+1 and q = 32t+1, respectively.
Let Γ′(A2(q)), Γ

′(B2(q)), q = 22t+1 and Γ′(G2(q)),q = 32t+1 be polarity
graphs for geometries of groups A2(q), B2(2

2t+1) and G2(3
2t+1),respectively.

We have v = |V (Γ′(A2(q))| = 1 + q + q2, degree of each vertex of Γ′(A2(q))
is ≥ q and this graph does not contain C4. It means that the size of the
family (Γ′(A2(q)) is 1/2(v

1+1/2 + o(v1+1/2). This value is on the bound of
theorem 3 for d = 2. Similarly, we have v = |V (Γ′(B2(q))| = 1+ q+ q2+ q3,
q = 22t+1 degree of each vertex of Γ′(B2(q)) is ≥ q and this graph does
not contain C4 and C6. So the size is on the bound of Theorem 3 for
d = 3. In case of polarity graph Γ′(G2(q)), q = 32t+1 the order v equals
to 1 + q + q2 + q3 + q4 + q5, each vertex of this graph has degree ≥ q and
the graph does not contain C4, C6, C8, C10. It means that the size is on the
upper bound of theorem 23 for d = 5.

Other examples of graphs (affine subgraphs of generalised m-gons, m =
3, 4, 6) with the size on the upper bound of Theorem 3 (d = 3, 4, 6) the
reader can find in [123].
The following general lower bound for k 6= 2, 3, 5 can be obtained from

the studies [64] of polarity graphs for the family of graphs D(n, q).

Proposition 27.

ex(v,C4, C6, . . . , C2k) ≥ 1/2(v1+2/(3k−3+e))− o(v1+2/(3k−3+e))

where e = 0 if k is odd, and e = 1 if k is even.

4.4. On the directed graphs without commutative diagrams

of rank < d of minimal order

Recall that (k, g)-cage is a simple graph of degree k, girth g of minimal
order v(k, g). The following objects are similar to classical cages.

Definition 1. We refer to the directed graph with the girth g, output degree
k and minimal order u(k, g) as directed (k, g)-cage.

As it follows from the definition of directed (k, g)-cage

Theorem 24. The following inequalities hold:

(k+ d)(k+ d− 1) . . . (k+1) ≥ u(k, 2d+1) ≥ 1+ k(k− 1) + . . . k(k− 1)d−1,
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2[(k+d)(k+d−1) . . . (k+1)] ≥ u(k, 2d+2) ≥ (1+(k−1)+. . . (k−1)d)+(k−1)d

Proof. Let Γ be directed graph with k-outputs for each vertex and girth
indicator d, then the branching process starting with the chosen vertex a
gives s = 1+ k+ k(k− 1) + . . . k(k− 1)d different vertices. So we prove (i).
Let us consider the arc a → b. We have k − 1 output arcs (a, x) from

a, which are different from (a, b). The branching process starting from
each element x 6= b gives at least (k − 1) + . . . (k − 1)d−1 passes of length
≤ d− 1. This way we get set T of elements of distance (d− 1) from a. Let
us consider arcs of kind (b, y), y 6= a. The branching process from y gives
us (q − 1) + (q − 1)d−1 at distance d − 2 from y. Together with b we have
1 + (q − 1) + . . . (q − 1)d−1 elements at distance ≤ d − 1 from b. This set
has empty intersection with T because of absence of commutative diagrams
Od+1,d. So we have at least (1 + (k − 1) + . . . (k − 1)d) + (k − 1)d different
vertices of the graph.

Proposition 28. Let Γ be directed cage with the output degree ≥ 3 of order
v and girth indicator d.
(i) If its girth is 2d+1, then the size E of the graph satisfies the following
inequality

v1+1/d − dv ≤ E ≤ v1+1/d + v

(ii) if its girth is 2d+2, then the size E of the graph satisfies the following
inequality

(1/2)1/dv1+1/d − dv ≤ E ≤ (1/2)1/dv1+1/d + v

Proof. The proof of the theorem 1 establishes in fact the upper bound on
E. Let us consider the case of odd girth. We have (k + d)d > (K + d)(k +
d − 1) . . . (K + d + 1) ≥ v. Thus k + d > v1/d and k > v1/d − d. So
E = V k > v(v1/d − d).
In case of even girth we have 2(k + d)d > 2(K + d)(k + d− 1) . . . (K +

d + 1) ≥ v, which leads to (v/2) < (k + d)d, (k + d) > (1/2)1/dv1/d and
k > (1/2)1/dv1/d − d. So E = vk > (1/2)1/dv1+1/d − dv in this case.

Let P be some property of directed regular graphs and uP (k, g) be the
minimal order of graph with the output degree K and the girth indicator g.
It is clear that uP (k, g) ≥ u(k, g). So v(m, g) ≥ u(m, g), in particular. The
following statement follows immediately from the above inequalities.
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Corollary 11. Let s be the property to be simple graph. Then

a) v(k, 2d+ 1) = uS(k, 2d+ 1) ≥ u(k, 2d+ 1) ≥1 + k + k(k − 1) + · · ·+
+ k(k − 1)d−1,

b) v(k, 2d+ 2) = us(k, 2d+ 2) ≥ u(k, 2d+ 2) ≥(1 + (k − 1) + · · ·+
+ (k − 1)d) + (k − 1)d

The above lower bound for g = 2d+2 can be improved by Tutte inequal-
ity v(k, 2d + 2 ≥ 2(1 + (k − 1) + . . . (k − 1)d) (see [15]). The Tutte’s lower
bound for v(k, 2d+2) is the same with (b). The upper and lower bound for
U(k, g) are quite tight, both of them are given by polynomial expression in
variable k of kind kd+f(k), where d = [(q−1)/2] and degf(x) ≤ d−1. The
situation with the known upper bound on the order of cages is different,
such bound is quite far from the known lower bound.
Cages of odd girth with the order on the Tutte’s bound are known as

Moore graphs. There are only finite examples of Moore graphs. Well-known
finite generalized m-gons are examples of cages of even girth (see next sec-
tion of the paper).
From the existence of the k-regular Moore graph of girth 2d+1 (2d+2)

follows U(k, d) = v(k, 2d + 1) = 1 + k(k − 1) + . . . k(k − 1)d−1 (u(k, d) =
v(k, 2d + 1) = 2(1 + (k − 1) + . . . (k − 1)d), respectively.
There is a finite number of Moore graphs of order v of odd girth. Some

infinite families of Moore graphs of even girth are known (see [17] or next
section).

Proposition 29. Let A be the property to be the graph of antisymmetric
relation Φ i.e. (a, b) ∈ Φ implies that (b.a) is not in Φ. Then
(i) (k + d)(k + d− 1) . . . (k + 1) ≥ uA(k, 2d + 1) ≥ 1 + k + k2 + . . . kd,
(ii) 2[(k+d)(k+d−1) . . . (k+1)] ≥ uA(k, 2d+2) ≥ [1+k+k2+ . . . kd]+
(k − 1)kd−1.

Proof. The graphs Γk(d) and Γ
′
k(d) are antisymmetric graphs. So their size

establishes the upper bounds for uA(2k + 2) and uA(2k + 1), respectively.
The antisymmetric graph does not contain diagram O1,1. So, the branching
process starting from chosen vertex a produces 1 + k + k2 + . . . kd different
vertexes and we are getting lower bound of the inequality (i).
Let b satisfy a → b. The branching process with d − 1 steps starting

from b forms set B with 1 + k + k2 + . . . kd distinct elements. We can
consider k−1 output arcs (a, x) from a, which are different from (a, b). The
branching processes with d− 1 steps starting from each x bring (k− 1)kd−1

different elements at distance d from the vertex a. They are different from
elements of B because of the absence of diagrams Od+1,d and diagrams Od,s,
1 ≤ s ≤ d. So we get the lower bound of inequality (ii).
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The bounds (i) and (ii) are valid for balanced antisymmetric regular
graphs because of Γk(d) and Γ

′
k(d) are balanced graphs.

4.5. Algebraic explicit constructions of extremal regular

directed graphs with the fixed girth indicator

We shall use the term of algebraic graph for the of graph Γ(K) of binary
relation Φ, such that the vertex set V (Γ) = V (K) is an algebraic variety
over commutative ring K of dimension ≥ 1 and for each vertex v ∈ V the
neighborhoods In(v) = {x|(x, v) ∈ V } and Ou(v) = {x|(v, x) ∈ V } are
algebraic varieties over K of dimension ≥ 1 as well (see [7] for the case of
simple graphs). We shall use the term the family of directed graphs of large
girth for the family of regular graphs Γi with output degree ki and order
vi such that their girth indicator di = gi(Γi) are ≥ c logki(vi), where c > 0
does not dependent on i. So the size of such graphs is quite close to the
above bounds.
We say that Γi form a family of asymptotical directed cages of odd (even)

girth if vi = ki
di−1 + o(ki

di−1) ( vi = 2ki
di−1 + o(ki

di−1). It is clear that
asymptotical cages of even or odd girth are families of graphs of large girth.
In this section we consider examples of families of algebraic graphs of

large girth with fixed girth indicator, asymptotical directed cages of odd
and even girth, in particular.
Recall that we use used term tactical configuration of order (s, t) for

biregular bipartite simple graphs with bidegrees s + 1 and r + 1. It corre-
sponds to incidence structure with the point set P , line set L and symmetric
incidence relation I. Its size can be computed as |P |(s+ 1) or |L|(t+ 1).
Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical

configuration with partition sets P (point set) and L (line set) and incidence
relation I. We define the following irreflexive binary relation φ on the set
F :

((l1, p1), (l2, p2)) ∈ φ if and only if p1Il2, p1 6= p2 and l1 6= l2. Let
F (I) be the binary relation graph corresponding to φ. The order of F (I) is
|P |(s+ 1) (or |L|(t+ 1) We refer to it as directed flag graph of I.

Lemma 17. Let (P,L, I) be a tactical configuration with bi-degrees s + 1
and t + 1 of girth g ≥ 4k. Then the girth indicator of directed graph F (I)
with the output and input degree st is > k.

Proof. The absence of even cycles C2s, 2 < s < 2k− 2 in the graph I insure
the absence of commutative diagrams Or,s, 1 ≤ s ≤ r ≤ k in the directed
graph F (I).
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Let (P,L, I) be the incidence structure corresponding to regular tactical
configuration of order t.
Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈ L, p ∈ P, lIp} be

two copies of the totality of flags for (P,L, I). Brackets and parenthesis allow
us to distinguish elements from F1 and F2. Let DF (I) be the directed graph
(double directed flag graph) on the disjoint union of F1 with F2 defined by
the following rules

(l1, p1) → [l2, p2] if and only if p1 = p2 and l1 6= l2,
[l2, p2] → (l1, p1) if and only if l1 = l2 and p1 6= p2.

Lemma 18. Let (P,L, I) be a regular tactical configuration of order s with
the girth g ≥ 2m. Then the girth indicator of double directed graph DF (I)
with the output and input degree s is > m.

Proof. The absence of even cycles C2s, 2 < s < m−1 in the bipartite graph
I insure the absence of commutative diagrams Or,s, 1 ≤ s ≤ r ≤ m in the
double directed graph DF (I).

Generalized m-gons GPm(r, s) of order (r, s) were defined by J. Tits in
1959 as tactical configurations of order (s, t) of girth 2m and diameter m.
According to well known Feit - Higman theorem a finite generalized

m-gon of order (s, t) has m ∈ {3, 4, 6, 8, 12} unless s = t = 1.
The known examples of generalized m-gons of bidegrees ≥ 3 and m ∈

{3, 4, 6, 8} include rank 2 incidence graphs of finite simple groups of Lie type
(see [18]). The regular incidence structures are I1,1(3, q) for m = 3 (groups
A2(q)), I1,1(4, q), m = 4 (groups B2(q)) and I1,1(6, q), m = 6 (group G2(q)).
In all such cases s = t = q, where q is prime power.
The biregular but not regular generalized m-gons have parameters s =

qα, t = qβ, where q is a prime power. The list is below: relation I2,1(4, q),
s = q2, t = q, q is arbitrary large prime power for m = 4; I3,2(6, q), s =
q3, t = q2, where q = 32k+1, k > 1 for m = 6; I2,1(8, q), s = q2, t = q,
q = 22k+1 for m = 8. For each triple of parameters (m, s, t) listed above
there is an edge transitive generalized m-gon of order (s, t) related to certain
finite rank 2 simple group of Lie type. in the cases of m = 3 (projective
planes. in particular) and m = 4 (generalized quadrangles) some infinite
families of graphs without edge transitive automorphism group are known.
The following 2 lemmas can be obtained immediately from the axioms

of generalized polygon.

Lemma 19. Let (P,L, I) be the generalized 2k-gon of order (r, s). Then

|P | =
∑

t=0,k−1

(rtst + rt+1st), |L| =
∑

t=0,k−1

(strt + st+1rs).
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Lemma 20. Let (P,L, I) be regular generalized m-gon of degree q+1. Then
|P | = |L| = 1 + q + · · · + qm−1.

Corollary 12. For each m = 3, 4, 6 and prime p the family Fm(q), q = pn,
n = 1, . . . of edge transitive polygons is an algebraic family over Fp of cages
of girth 2m of degree q + 1 with the order on the Tutte’s lower bound.

Let (P,L, I) be generalized m-gon of order (s, t), s ≥ 2, t ≥ 2 and
e = {(p, l}, (p ∈ P , l ∈ L, pIl) be chosen edge of this simple graph.
Let Se = Sche(I) be the restriction of incidence relation I onto P ′ ∪ L′

where P ′ (L′) is the totality of points (lines) at maximal distance from p
(l, respectively). It can be shown that (P ′, L′, Se) is a tactical configuration
of degree (s − 1, t − 1). Let us refer to (P ′, L′, Se) as Schubert graph. If
the generalized polygon is edge-transitive its Schubert graph is unique up
to isomorphism. In this case Schubert graph corresponds to the restriction
of incidence relation onto the union of two of the largest ”large Schubert
cells”, i. e. orbits of standard Borel subgroups of the highest dimension.
The following statement immediately follows from the definitions of

graphs Sm(q).

Proposition 30. For each Sm(p) m = 3, 4, 6 and prime p the family of
Schubert graphs Sm(p) of regular generalized m-gons Fm(q) is algebraic over
Fp family of asymptotical cages of even girth with the order 2q

m−1 and degree
q.

The extremal properties of finite generalized polygons, their Schubert
graphs and some of their induced subgraphs have been considered in [123].
Remark. The girth of Sm(q) is 2m for ”sufficiently large” parameter q.
Let (P,L, I) be a regular tactical configuration of order (t, t). The double

configuration I ′ = DT (I) is the incidence graph of the following incidence
structure (P ′, L′, I ′) : P ′ = F (I) = {(p, l)|p ∈ P, l ∈ L, pIl}, L′ = P ∪ L,
f = (p, l)Ix, x ∈ L′ if p = x or l = x. It is clear that the order of tactical
configuration I ′ is (1, t). If (P,L, I) is a generalized m-gon, then (P ′, L′, I ′)
is a generalized 2m-gon.

Proposition 31. (i) If the girth of regular tactical configuration (P,L, I)
of degree s + 1 is 2t, then the girth of DT (I) is 4t. The order of DT (I) is
(s, 1).
(ii) Let (P,L, I) be regular generalized m-gon, then DT (I) is generalized

2m-gon.

Proof. It is clear that cycle Cl of length 2l in the simple graph DT (I)
corresponds to the cycle Cl of original tactical configuration. Notice that
bipartite graphs does not contain odd cycles. So equality g(I) = 2t implies
g(DT (I)) = 4t.
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Let I be generalised m-gon. Then the girth and diameter of m-gon are
g(I) = 2m and d(I) = m respectively. As it follows from the definition the
diameter of DT (I) is twice large than d(I). So the girth and diameter of
DT (I) are 4m and 2m, respectively.

Corollary 13. The configurations DT (I) = I2(m, q) for known regular
m-gons, m = 3, 4, 6 of degree q + 1, q is a prime power, are generalized
2m-gons of order (1, q).

Theorem 25. (i) Let Is.t(m, q), m ≥ 4 be the incidence relation of one
of the known edge transitive m-gons defined over the field Fq, q = pn,
where p is a prime number.
Then for each tuple (m, s, t, p) the family of directed flag-graphs
Fn = Fn(m, s, t, p), n = 1, . . . for generalized m-gon of order (qs, qt) is
an algebraic over Fp family of asymptotic cages of odd girth. The girth
indicator of each graph from the family is m/2+1 and the girth is m+1
(5, 7, 9).

(ii) Let Ss.t(m, q), m ≥ 4 be the Schubert graph of the incidence relation
Is.t(m, q) of one of the known edge transitive m-gons defined over the
field Fq, q = pn, where p is a prime number.
Then for each tuple (m, s, t, p) the family of directed flag-graphs
SFn(m, s, t, p) for Ss.t(m, q) is an algebraic family of asymptotic cages
of odd girth defined over Fp. The girth indicator of graph from the family
is m/2 + 1 and the girth is m+ 1 if parameter q is sufficiently large.

(iii) Let I1.1(m, q) be the incidence relation of one of the known edge
transitive regular m-gons defined over the field Fq, q = pn, where p is a
prime number. Then for each pair (m, p) the family DF (m, p) of double
flag graphs DF (m, i) = DF (I1.1(m, pi)), i = 1, 2, . . . is an algebraic
over family of directed asymptotic cages of even girth defined over Fp .
The girth indicator of each DF (m, i) is m + 1 and the girth is 2m + 2
(possible values are (8, 10.14)). Double flag graphs of Schubert subgraphs
for I1.1(m, pn), n = 1, . . . form the family of asymptotical directed cages
as well.

(iv) Let I2(m, q), m ≥ 3 be the incidence relation of double tactical con-
figuration of regular generalized m-gon defined over Fq, q = pn, where
p is a prime. Then for each pair (m, p) the family F (m, p) of directed
flag-graphs Fn(m, p) of I2(m, pn) , n = 1, . . . is an algebraic family of
directed graphs of large girth over Fp. The girth indicator of each graph
is m+ 1 and girth is 2m+ 1 (possible values are 7, 9, 13).
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Proof. As it follows from lemma 11 the girth indicator of each directed graph
Fn is > m/2. The existence of cycles C2m in the corresponding generalised
m-gon leads to the existence of commutative diagrams Om/2+1,m. So the
girth indicator of each graph is m/2 + 1 and the girth is 2(m/2) + 1.
The order of each directed graph Fn coinsides with the cardinality of

the flag set of the correspondent generalised m-gon or its size and can be
given by polynomial expession f(q) in single variable q (see lemmas 13 and
14 for the close formulae for the order ). The degree of the balanced graph
Fn is qs+t. The highest term for the polynomial F (q) is q(s+t)m/2.
So for each prime p the family Fn is the family of asymptotical cages of

odd girth and we proved statement (i) of the theorem.
The Schubert subgraphs SFn is the induced subgraps of Fn. So for

the the girth indicator and the girth of the Schubert subgraph we have
gi(SFn) ≥ gi(Fn) ≥ m/2 + 1 and g(SFn) ≥ g(Fn) ≥ m + 1. Notice that
the order of SFn is exactly q(s+t)m/2. The assumption that gi(SFn) >
gi(Fn) ≥ m/2 + 1 for sufficiently large q contrudict to previously proven
statement (i) (or established upper bound for directed cages). So graphs
(SFn), n = 1, . . . form the family of asymptotical cages and we proved (ii).
The graphs DF (m, i). i = 1, . . . are graphs of order 2f(q) where f(q) is

the order of corresponding directed flag graph F i. As it follows from lemma
12 the girth indicator of each double directed graph DF (m, i) is > m. The
bipartite structure of the graph corresponding to the partition which formed
by 2 copies of F (I) insures the absence of commutative diagrams Om+1,m

The existence of cycles C2m in the corresponding generalised m-gon leads to
the existence of commutative diagrams Om+1,m+1. So the girth indicator of
each graph is m+1 and the girth is 2m+2. The highest term of polyniomial
expression 2f(q) is 2qm. So the graphs form the family of asymptotical
directed cages. Double flag graphs of Schubert subgraphs for I1.1(m, pn),
n = 1, . . . have order 2qm, q = pn. So if n is sufficiently the girth indicator
and gith of such graph is m + 1 and 2m + 2, respectively. Thus we show
that they form the family of asymptotical cages as well. So we proved point
(iii).
Acording to proposition 17 the double tactical configuration I2(m, q),

q = pn, p is prime is generalised 2m-gon. Similarly to part (i) of the proof
we can show that the girth indicator of directed flag graph of I2(m, q) is
m+1 and its girth is 2m+1 (7, 9, 13). The order v = vn(m, p) of the graph
Fn(m, p) can be computed as the size of generalised 2m-gon of order (q, 1).
It is polynomial expression in variable q of degree m. So these graphs form
the family of graphs of large girth.

Regular finite generalized polygons have been used in works of R. Tanner
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on Coding Theory. The applications of biregular generalized polygons and
their Schubert graphs to Cryptography the reader can find in [110].
Paper [114] is devoted to cryptographical algorithms based on nonsym-

metric directed asymptotical cages as above. Let DEn(K) (DE(K)) be the
double directed graph of the bipartite graph D(n,K) (D(K), respectively).
Remember, that we have the arc e of kind (l1, p1) → [l2, p2] if and only if
p1 = p2 and l1 6= l2. Let us assume that the colour ρ(e) of arc e is l11,0− l21,0.

Recall, that we have the arc e′ of kind [l2, p2] → (l1, p1) if and only if
l1 = l2 and p1 6= p2. Let us assume that the colour ρ(e′) of arc e′ is p11,0−p21,0.
It is easy to see that ρ is a perfect algebraic colouring.
IfK is finite, then the cardinality of the colour set is (|K|−1). Let RegK

be the totality of regular elements, i.e. not zero divisors. Let us delete all
arrows with colour, which is a zero divisor. We will show that a new graph
REn(K) (RE(K)) with the induced colouring into colours from the alphabet
Reg(K) is vertex transitive. Really, according to [59] graph D(n,K) is an
edge transitive. This fact had been established via the description of regular
on the edge set subgroup U(n,K) of the automorphisms group Aut(G). The
vertex set for the graph DEn(K) consists of two copies F1 and F2 of the
edge set for D(n,K). It means that Group U(n,K) acts regularly on each
set Fi, i = 1, 2. Explicit description of generators for U(n,K) implicates
that this group is a colour preserving group for the graph DEn(K) with the
above colouring.
IfK is finite, then the cardinality of the colour set is (|K|−1). Let RegK

be the totality of regular elements, i.e. non-zero divisors. Let us delete all
arrows with colour, which is a zero divisor. We will show that a new affine
graph REn(K) (RE(K)) with the induced colouring into colours from the
alphabet Reg(K) is vertex transitive. Really, the group U(n,K) is an edge
transitive on the graph D(n,K). The vertex set for the graph DEn(K)
consists of two copies F1 and F2 of the edge set for D(n,K). It means that
the group U(n,K) induced on vertices of DEn(K) acts regularly on each set
Fi, i = 1, 2. The above explicit description of elements for U(n,K) implicate
that this group is a colour preserving group for the graph DEn(K) with the
above colouring. The vertex set ofDEn(K) coincides with the set of vertices
of REn(K), we just delete the arcs with colours from {K − Reg(K)}. The
permutation group of (U(n,K), F1 ∪ F2) is an automorphism group of the
graph REn(K). Let n = 2s be even number then the polarity π of D(2n,K)
maps F1 onto F2 and F2 on F1. It means that group Ũ(2n,K) generated by
elements of U(2n,K) and π acts transitively on the vertex set of RE2n(K).
So all connected components of the graph RE2n(K) are isomorphic. Let
CRE2n(K) be such a connected component. Let us set t = 2n. We show
that the girth indicator git for the family of k-regular graphs CREt(K) can
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be evaluated via inequality git ≥ 2/(3logk |K|)logk(v) + C where C is some
independent on v constant.
We use the restrictions of the relations DEt(K) and REt(K) on the ver-

tices of the double flag graph for CDt(K). As it follows from the above dis-
cussionDt is a union of connected components of graphs CDt(K). Each con-
nected component of CDt(K) is a disjoint union of appropriate connected
components of CREt(K). Let vt be the order of CREt(K) = Gn(K). We
set |K| = kα. The parameter vt is ≤ 2|CDt(K)||K| (the order of DEt(k)).

Instantly from the definition of CD(t,K) we get |DEt(k)| = 2|K|3/4t+c,
where c is some independent constant. So we get the following 3 equivalent
inequalities:

vt ≤ 2kα(3/4t+c1),

vt/2 ≤ kα(3/4t+c1)

logk(vt/2) ≤ α(3/4t + c1).

From the last inequality we get

t ≥ 4/(3α)logk(vt) + c2

( c1 and c2 are independent on t constants).
According to [114] the family REt(k) is a family of graphs with increasing

girth indicator gi(REt(K)) ≥ [(t + 4)/2]. Notice that the girth indicators
of REt(K) and its connected component CDEt(K) coincide. It means that
we prove

Theorem 26. For each finite commutative ring K with at least 3 regular
elements the family CRE2n(K), n = 1, 2, . . . is a family of directed graphs
of large girth and the following lower bound foe the girth indicator holds

git ≥ (t+ 2)/2 ≥ 2/(3logk |K|)logk(v) + C

The order of the graph Gn(K) = CRE2n(K) is less that the order of
flag graph for CDn(K). We have g(Gn(K)) ≥ n+6. According to [114] the
r-regular graph has at least 2r(n+4)/2 vertices.

4.6. Simple homogeneous algebraic graphs over infinite field:

two optimisation problems

Families of finite graphs of large girth were introduced in classical ex-
tremal graph theory. One important theoretical result here is the upper
bound on the maximal size of the graph with girth ≥ 2d established in Even
Circuit Theorem by P. Erdös. We consider some results on such algebraic
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graphs over any field. The upper bound on the dimension of variety of edges
for algebraic graphs of girth ≥ 2d is established. Getting the lower bound,
we use the family of bipartite graphs D(n,K) with n ≥ 2 over a field K,
whose partition sets are two copies of the vector space Kn. We consider the
problem of constructing homogeneous algebraic graphs with a prescribed
girth and formulate some problems motivated by classical extremal graph
theory. Finally, we present a very short survey on applications of finite
homogeneous algebraic graphs to coding theory and cryptography.
We study extremal graphs and their applications to coding theory, cryp-

tography, and quantum computations. The main object of consideration is
a homogeneous algebraic graph defined in terms of algebraic geometry in
the following way.
Let F be a field. Recall that a projective space over F is a set of elements

constructed from a vector space over F such that a distinct element of the
projective space consists of all non-zero vectors which are equal up to a mul-
tiplication by a non-zero scalar. Its subset is called a quasiprojective variety
if it is the set of all solutions of some system of homogeneous polynomial
equations and inequalities.
An algebraic graph φ over F consists of two things: the vertex set Q being

a quasiprojective variety over F of nonzero dimension, and the edge set being
a quasiprojective variety φ in Q×Q such that (x, x) /∈ φ for each x ∈ Q and
xφy implies yφx (xφy means (x, y) ∈ φ). The graph φ is homogeneous (or
M -homogeneous) if for each vertex v ∈ Q the set {x | vφx} is isomorphic to
some quasiprojective variety M over F of nonzero dimension. The reader
can find the general conception of algebraic graphs [3].
We assume that the field F contains at least 5 elements. If F is finite

then the vertex set and the edge set are finite and we get a usual finite
graph.
The cycle Ct in φ is a sequence x1, x2, . . . , xt of distinct elements of Q

such that x1φx2, x2φx3, . . . , xt−1φxt, x1φxt are edges of the graph.
We define the girth g = g(φ) of a graph φ as the length of its minimal

cycle. If φ is without cycles then g(φ) = ∞.
The paper is devoted to the following two optimization problems:
(A) Let Q be a M -homogeneous graph such that dimM = k over F

and its girth is a finite number g. What is the minimal possible dimension
va(k, g) for the variety of vertices?
(B) Let φ be a homogeneous graph of girth g ≥ t and dimM = k. What

is the maximal possible dimension of φ?
Problems (A) and (B) are related to each other, in case of finite field we

can change the dimension of Q and φ on their cardinalities and get classical
problems on minimal order of regular simple graph of given degree and given
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girth (analogue of A) and maximal size (number of edges) of the graph with
girth ≥ t (analogue of B).
So (A) and (B) are motivated by the branch of extremal graph theory

which studies order of cages, related bounds, cages itself, bounds on maximal
number of edges of the graph of given order and girth, and families of graphs
of large girth (see Section 2).
we propose an analogue of Tutte’s bound and variants of Erdös’ Even

Circuit Theory for homogeneous graphs, and define the family of algebraic
graphs of large girth over an arbitrary field. Examples of extremal alge-
braic graphs of bounded dimension are presented. We formulate some open
problems for general homogeneous graphs motivated by classical extremal
graph theory.
we construct examples of families of algebraic graphs of large girth over

fields and establish the upper bound on the minimal dimension of the vertex
set for the graph of prescribed girth g.
We hope that the construction of homogeneous algebraic graphs over

C and over the ring of Gaussian numbers can be used in quantum coding
theory [1] and quantum cryptography [63].

4.6.1. Dense finite graphs of large girth and of large size

All graphs that we consider are simple, i.e. undirected, without loops
and multiple edges. Let V (G) and E(G) denote the set of vertices and the
set of edges of a finite graph G, respectively. The number of vertices |V (G)|
is called the order of G, and |E(G)| is called the size of G. A path in G
is called simple if all its vertices are distinct. When it is convenient, we
identify G with the corresponding symmetric antireflexive binary relation
Φ on V (G), i.e. Φ is a subset of V (G) × V (G). The length of a path is the
number of its edges.
The girth of a graph G, denoted by g = g(G), is the length of a shortest

cycle in G. Let k ≥ 3 and g ≥ 3 be integers. A (k, g)-graph is a k-regular
graph with girth exactly g. A (k, g)-cage is a (k, g)-graph of minimal order.
The problem of determining v(k, g) of a (k, g)-cage is unsolved for most
pairs (k, g) and is extremely hard in general case. By counting the num-
ber of vertices in the breadth-first-search tree of a (k, g)-graph, Tutte [17]
established the following classical lower bounds for v(k, g):

v(k, g) ≥ k(k − 1)(g−1)/2/(k − 2) for g odd, k ≥ 4,
v(k, g) ≥ 2(k − 1)g/2−2/(k − 2) for g even, k ≥ 4.

The graphs of odd girth for which equality holds are called Moore graphs.
Each Moore graph with valency k = 2 is a polygon and each (2d+1)-gon is
a Moore graph. Damerell proved that Moore graph with valency k ≥ 3 has
a diameter 2 and k ∈ {3, 7, 57}. There are unique examples for k = 3 (the
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Petersen graph) and k = 7 (Hoffman-Singleton graph). No example with
k = 57 is known, see [17].
The problem of determining v(k, g) was posed in 1959 by F. Kartesi

who observed that v(3, 5) = 10 was realized by the Petersen graph (see
[17]). The classical extremal graph theory studies extremal properties of
simple graphs. Let F be family of graphs none of which is isomorphic to
a subgraph of the graph Γ. In this case we say that Γ is F -free. Let P
be certain graph theoretical property. By exP (v, F ) we denote the greatest
number of edges of F -free graph on v-vertices that satisfies property P . If
P is just a property to be simple graph we omit index P and write ex(v, F ).
The reader can find the missing definitions in extremal graph theory in
previous units of this textbook.

Theorem 27. Let G be quasi homogeneous algebraic graph over a field F
of girth g such that the dimension of neighbourhood for each vertex is N ,
N ≥ 1. Then

[(g − 1)/2] ≤ dim(V )/N.

Proof. Assume that [(g−1)/2] = k > dimV
dimN(F ) . Let v be a vertex andM be

the variety of elements at distance k from v. The absence of cycles Cs, 1 ≤
s ≤ 2k, means that each element fromM is connected with v by the unique
pass. Elements of M are in one to one correspondence with such passes.
Let Nv(F ) be a neighbourhood of v. A pass is a sequence v, u1, u2, . . . , uk,
where u1 ∈ Nv(F ), u2 ∈ Nu1(F ) − {u1}, . . . , uk ∈ Nuk−1

(F ) − {uk−1}. So
the dimension of M is N × k. But N × k > dimV by our assumption, so
we get a contradiction.

We can rewrite the above statement in the form similar to Tutte’s in-
equalities as follows.

Corollary 14. Let G be an algebraic (k, g)-graph, i.e. a homogeneous al-
gebraic graph over a field F of girth g such that the neighbourhood of each
vertex is isomorphic to variety N(F ) of dimension k. Then dimV (G) ≥
[(g − 1)/2]k.

The following form of Theorem 2 is an analogue of inequality (1).

Corollary 15. Let G be a homogeneous graph over a field F and E(G) be
the variety of its edges. Then dim(E(G)) ≤ dimV (G)(1 + [(g − 1)/2]−1).

Indeed, dim(E(G)) = dim(V ) × dim(N(F )). From the previous in-
equality we have dim(N(F )) ≤ dimV (G)[2/(g − 1)/2]. So dim(E(G)) ≤
dim(V )× dimV (G)[(g − 1)/2] = dimV (G)((1 + [(g − 1)/2]−1).
Let v(k, g, F ) be the minimal dimension of the variety of vertices for

algebraic (k, g)-graph defined over F . Let va(k, g) be the minimal dimension
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of the variety of vertices for algebraic (k, g)-graph defined over some field
F . We have

va(k, g) ≥ [(g − 1)/2]k. (4.1)

The bi-homogeneous incident structure is a bipartite graph with parti-
tion sets P and L containing points and lines, respectively, such that there is
a field F such that P ∪L is an algebraic variety over F and neighbourhoods
of each pair of points (lines) are isomorphic algebraic varieties over F as
well. J. Tits [96] defined generalized m-gon as a graph of diameter m and
girth 2m, see also [95, 97].
We use the term bi-homogeneous generalized polygon for a bi-homogeneous

incident structure which is a generalized polygon.

Theorem 28. The equalities va(n, 6) = 2n, va(n, 8) = 3n and va(n, 12) =
5n, n ≥ 1 hold.

Proof. From the previous theorem we have va(n, 6) ≤ 2n, va(n, 8) ≤ 3n and
va(n, 12) ≤ 5n. Let G be Shevalley group of rank 2 defined over a field F
which is an n-dimensional extension of field K. In particular, we can take
K = Q or consider finite field K = Fp, where p is prime, and define the
extension via an irreducible polynomial of degree n. Let B be the standard
Borel subgroup of G, P1 and P2 are standard parabolic subgroups of G,
i.e. proper subgroups containing B. The geometry of G is the incidence
structure with the point set (G : P1) and the line set (G : P2) consisting of
left cosets gPi, i = 1, 2. A point p ∈ (G : P1) and a line l ∈ (G : P2) are
incident (pIl) if and only if the set theoretical intersection of cosets p and l is
not empty. The simple graph of binary relation I is a homogeneous algebraic
graph over F = Kn, the neighbourhood of each vertex is isomorphic to
projective line over F . So the dimension of neighbourhood over K is n. It
is well known that graph I is an algebraic generalized m-gon. For each field
F we have the following options:
(i) G = A2(F ) (classical linear group PSL2(F )), m = 3.
(2i) G = B2(F ) (classical projective symplectic group PSp4(F )), m = 4.
(3i) G = G2(F ) (well known Dixon group over F ), m = 6.
The projective variety (G : P1) ∪ (G : P2) has dimension m − 1 over

the field F . So for each m ∈ {3, 4, 6} we have an example of algebraic
(n, g)-graph of dimension n(m − 1). So va(n, 2m) = n(m − 1) for m ∈
{3, 4, 6}.

Let e(g, n) be the maximal dimension of the variety of edges of homoge-
neous algebraic graph of girth g with the n-dimensional variety of vertices.
The following equalities are dual to equalities of the above theorem.
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automata and optimistion problems

Corollary 16. The following equalities hold: e(6, n) = n+ n/2 for even n,
n ≥ 2, e(8, n) = n + n/3 for n = 3s, s = 1, 2, . . . , and e(12, n) = n + n/5
for n = 5s, s = 1, 2, . . .

The following open problems are interesting:
(i) Find all values of girth g for which the lower bound (4.1) is sharp.
(ii) Find all values m for which there exist homogeneous algebraic gen-

eralized polygons. The word ‘algebraic’ is strict here, the polygon has to
be a homogeneous algebraic graph in a sense of the above definition, i.e.
neighbourhoods of each two vertices are isomorphic.
From the existence of homogeneous generalized m-gon follows that the

bound (4.1) is sharp in case of girth 2m.
As follows from [30], finite bi-homogeneous generalized m-gons are exist

if m ∈ {3, 4, 6, 8} (see [17]). Recall the assumption that each vertex of
the graph contains at least 3 neighbours. J. Tits and R. Weiss (see [20])
classified all bi-homogeneous generalized m-gons with Moufang property.

Conjecture 1. Equality va(k, g) = [(g − 1)/2]k implies g ∈ {6, 8, 12}
We define the family of algebraic graphs of large girth Gi, i = 1, 2, . . .

over the field F if the dimV (Gi) is growing and the girth of Gi ≥ c· dimV (Gi)
dimN(Gi)

,
where c > 0 is a constant independent of i. From Theorem 1 we get c ≤ 2.
In the next section we prove the following upper bound on va(k, 2s).

Theorem 29. For each even g, g ≥ 6, we have va(k, g) ≤ k((3/4)g − α),
where α = 3, 5/2 for g = 0, 2 mod 4, respectively.

The problem of finding the good upper bound for va(k, 2s + 1) is very
interesting. Algebraic (k, 2s+ 1)-graphs such that the dimension of variety
of vertices is va(k, 2s+1) are analogues of well known Moore graphs or cages
with odd girth.
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